Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum 'kisses 'change the color of space: Published in Nature, observed for the first time with optical methods the quantum regime in the interaction between nano-sized spheres of gold

The image shows, in an artistic manner, the change in color when a quantum tunnel effect is produced in a subnanometric gap.

Credit: Picture courtesy of Cambridge University
The image shows, in an artistic manner, the change in color when a quantum tunnel effect is produced in a subnanometric gap.

Credit: Picture courtesy of Cambridge University

Abstract:
Researchers from the Donostia International Physics Center (DIPC) and the Materials Physics Center in Donostia-San Sebastián (CFM) have observed for the first time, with optical methods, the quantum regime in the interaction between nano-sized spheres of gold. This quantum regime has been identified thanks to the change of colour of the gap or empty space between these particles when these are at distances of less than one nanometre. This work, published in Nature journal, enables literally "seeing" a quantum kiss between nanoparticles.

Quantum 'kisses 'change the color of space: Published in Nature, observed for the first time with optical methods the quantum regime in the interaction between nano-sized spheres of gold

San Sebastian, Spain | Posted on November 7th, 2012

The gap generated between two opposing nanospheres of gold can change its colour when the distance between them is less than one nanometre, according to recent research co-directed by researchers from the DIPC and the CFM (a joint center between the CSIC [Spanish Scientific Research Council] and the UPV/EHU [the University of the Basque Country]), both based in the Basque City of Donostia-San Sebastián, and in collaboration with researchers from the Universities of Cambridge and Paris-Sud. This work published in Nature, confirmed that electrons accumulated on the gold walls around the illuminated gap between the spheres can "jump" from one to the other, thanks to the tunnel effect, thus reducing the accumulated charge on the surface of each of these spheres and modify the colour of the gap from red to blue (blueshifting).

This work enables literally "seeing" the effects of quantum mechanics and shows how light interacts with matter at subnanometre sizes. The change in colour of the gap is a "chromatic fingerprint" that identifies the initiation of a quantum regime therein - an effect that had been predicted by the theoretical team of Dr. Aizpurua, the lead researcher in Donostia, and now fully identified as a result of this research. To this end, highly sophisticated experiments have been combined with very advanced theories.

When two metallic spheres with a sufficiently small separation between them are illuminated with white light, this gap acquires colour thanks to the interaction of the electrons on the surface of the spheres with light. The beam of light 'pushes' the electrons and makes them oscillate, which gives a red colour to the gap. As the spheres get closer, the electron charge increases and this red colour intensifies. When the distance between both is reduced to under 0.35 nanometres, this accumulation of charge can be seen to drop, due to the tunnel effect, and thanks to which the electrons can jump from one ball to another without the spheres coming into contact with each other. Just as the quantum theory developed by the research teams in Donostia and Paris predicted, it is possible to identify this quantum electronic leap, given that, as the accumulated charge drops, the red colour of the gap changes to blue.

Experimental team leader and University of Cambridge researcher, Professor Jeremy Baumberg compares this reduction in charge with the tension released from a kiss "we think of this like the tension building up between a romantic couple. As their faces get closer the tension mounts, and only a kiss discharges this energy". In this case, however, the gold nanospheres approaching each other generate a virtual kiss, as they never actually touch, releasing the charge on their surfaces and changing the colour of the gap between them. As Professor Baumberg says, "it is practically like kissing, without the lips actually touching".

The experimental team at Cambridge explained: "aligning two gold nano-particles is like closing your eyes and trying to hold two needles with the fingers of either hand so that the points of each needle touch. Achieving this has meant years of hard work".

Javier Aizpurua commented that, in order to predict the colour changes now confirmed with this experiment, "the fusion of the quantum vision with the classical vision of the world" was necessary. "The modelling of so many electrons oscillating within the gold particles in response to a beam of light could not be described with existing theories", assured the CSIC and DIPC researcher.

This new result establishes a fundamental quantum limit for the minimum dimensions within which we can trap light. Moreover, this reinterpretation of the interaction between light and matter at a sub-nanometric scale could provide new ways of describing and measuring the atomic-scale world and open doors to new strategies for the manufacture of even smaller optoelectric technological devices and access new limits of resolution in photochemistry.

This research was funded by the Basque Government through its Science Agency, Ikerbasque, and the ETORTEK Nanoscience and Nanotechnology project, as well as by a European Union initiative through the Eranet CUBiHOLE project which originally brought together the teams involved in this research. Part of this work was developed during the time spent by Professor Baumberg as an Ikerbasque Visiting Professor at the DIPC.

####

For more information, please click here

Contacts:
Aitziber Lasa

34-943-363-040

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Physics

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Research partnerships

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Quantum nanoscience

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project