Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New discovery shows promise in future speed of synthesizing high-demand nanomaterials

Abstract:
A new discovery by University of Oklahoma and North Carolina State University researchers shows a breakthrough in speeding up the process for synthesizing transition metal oxide nanostructures. What had once taken days can now be accomplished instantaneously.

New discovery shows promise in future speed of synthesizing high-demand nanomaterials

Norman, OK | Posted on November 1st, 2012

After previous success using an oxygen-enriched flame to synthesize common nanomaterials, such as carbon nanotubes, nanofibers and fullerenes, OU College of Engineering professor Wilson Merchán-Merchán and his team conducted experiments using the same method to create a new form of nanostructures. Instead of synthesizing the carbon nanomaterials, they discovered a method of creating 1-D and 3-D TMOs that have distinctive electronic and mechanical properties.

With a multi-year grant from the National Science Foundation, Merchán-Merchán and his research affiliates are exposing bulk transition metals to the hottest parts of an oxygen-enriched flame. From that reaction, high-demand transition metal-oxide nanostructures are instantaneously synthesized, including nanorods, hollow channels and hybrid nanowires and platelets.

Inexpensive and quick growth of TMOs means a better chance for large-scale synthesis and eventual common use in the marketplace. The potential for increased supply has led to increased experimentation on the capacity of TMOs, and the results show their effectiveness in a diverse range of applications.

"Recently, one-dimensional TMO naonostructures have attracted tremendous attention due to their applications in optics, medicine and electronics," Merchán-Merchán said. "For instance, the micron-sized channel structures with nanometer wall thickness contain slender, prismatic and completely hollow cavities that can be used in medical applications for drug delivery."

Most recently, this research team coated the surface of solar panels with one of their flame-formed tungsten oxide nanorods. The result was a 5 percent increase in the solar panel's efficiency, a large gain considering solar panels' notoriously low efficiency rating of 15 to 20 percent.

With endless applications and a new horizon of possibilities, Merchán-Merchán's research into TMOs is still in its infancy.

"The distinct shape and chemical composition of the flame-formed nanostructures may change the way many products are designed," Merchán-Merchán said.

"Our next steps are to expand the application of TMOs using flames, in a variety of markets ranging from solar panels to electrodes for penetrating biological tissues for drug delivery and electrodes in lithium-ion batteries."

Merchán-Merchán said in order to scale-up the process, which is necessary for commercialization, an industrial partnership is essential.

In addition to Merchán-Merchán, the OU research team includes doctoral student Moien Farmahini as well as North Carolina State University researcher and professor Alexei Saveliev and doctoral student Shubham Srivastava.

####

For more information, please click here

Contacts:
Karen Kelly

405-325-9037

Copyright © University of Oklahoma

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Discoveries

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Announcements

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Industrial

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project