Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A better way to shed water: MIT researchers find that lubricated, nanotextured surfaces improved performance of condensers in power and desalination plants

 On a surface patterned with tiny pillars (white squares), and with a coating of a lubricant liquid that fills the spaces between the pillars, dome-shaped droplets of water condense but remain free to move quickly across the surface, unlike on conventional flat surfaces or ones with just the patterning, where they tend to stay stuck in place. The new surface treatment could provide a significant boost for power plants, water desalination and other applications.
Image courtesy of the Varanasi Laboratory
On a surface patterned with tiny pillars (white squares), and with a coating of a lubricant liquid that fills the spaces between the pillars, dome-shaped droplets of water condense but remain free to move quickly across the surface, unlike on conventional flat surfaces or ones with just the patterning, where they tend to stay stuck in place. The new surface treatment could provide a significant boost for power plants, water desalination and other applications.

Image courtesy of the Varanasi Laboratory

Abstract:
Condensers are a crucial part of today's power generation systems: About 80 percent of all the world's powerplants use them to turn steam back to water after it comes out of the turbines that turn generators. They are also a key element in desalination plants, a fast-growing contributor to the world's supply of fresh water.

A better way to shed water: MIT researchers find that lubricated, nanotextured surfaces improved performance of condensers in power and desalination plants

Cambridge, MA | Posted on October 22nd, 2012

Now, a new surface architecture designed by researchers at MIT holds the promise of significantly boosting the performance of such condensers. The research is described in a paper just published online in the journal ACS Nano by MIT postdoc Sushant Anand; Kripa Varanasi, the Doherty Associate Professor of Ocean Utilization; and graduate student Adam Paxson, postdoc Rajeev Dhiman and research affiliate Dave Smith, all of Varanasi's research group at MIT.

The key to the improved hydrophobic (water-shedding) surface is a combination of microscopic patterning — a surface covered with tiny bumps or posts just 10 micrometers (millionths of a meter) across, about the size of a red blood cell — and a coating of a lubricant, such as oil. The tiny spaces between the posts hold the oil in place through capillary action, the researchers found.

The team discovered that droplets of water condensing on this surface moved 10,000 times faster than on surfaces with just the hydrophobic patterning. The speed of this droplet motion is key to allowing the droplets to fall from the surface so that new ones can form, increasing the efficiency of heat transfer in a powerplant condenser, or the rate of water production in a desalination plant.

With this new treatment, "drops can glide on the surface," Varanasi says, floating like pucks on an air-hockey table and looking like hovering UFOs — a behavior Varanasi says he has never seen in more than a decade of work on hydrophobic surfaces. "These are just crazy velocities."

The amount of lubricant required is minimal: It forms a thin coating, and is securely pinned in place by the posts. Any lubricant that is lost is easily replaced from a small reservoir at the edge of the surface. The lubricant can be designed to have such low vapor pressure that, Varanasi says, "You can even put it in a vacuum, and it won't evaporate."

Another advantage of the new system is that it doesn't depend on any particular configuration of the tiny textures on the surface, as long as they have about the right dimensions. "It can be manufactured easily," Varanasi says. After the surface is textured, the material can be mechanically dipped in the lubricant and pulled out; most of the lubricant simply drains off, and "only the liquid in the cavities is held in by capillary forces," Anand says. Because the coating is so thin, he says, it only takes about a quarter- to a half-teaspoon of lubricant to coat a square yard of the material. The lubricant can also protect the underlying metal surface from corrosion.

Varanasi plans further research to quantify exactly how much improvement is possible by using the new technique in powerplants. Because steam-powered turbines are ubiquitous in the world's fossil-fuel powerplants, he says, "even if it saves 1 percent, that's huge" in its potential impact on global emissions of greenhouse gases.

The new approach works with a wide variety of surface textures and lubricants, the researchers say; they plan to focus ongoing research on finding optimal combinations for cost and durability. "There's a lot of science in how you design these liquids and textures," Varanasi says.

Daniel Beysens, research director of the Physics and Mechanics of Heterogeneous Media Laboratory at ESPCI in Paris, says the concept behind using a lubricant liquid trapped by a nanopatterned surface, is "simple and beautiful. The drops will nucleate and then slide down quite easily. And it works!"

That further research will be aided by a new technique Varanasi has developed in collaboration with researchers including Konrad Rykaczewski, an MIT research scientist currently based at the National Institute of Standards and Technology (NIST) in Gaithersberg, Md., along with John Henry Scott and Marlon Walker of NIST and Trevan Landin of FEI Company. That technique is described in a separate paper also just published in ACS Nano.

For the first time, this new technique obtains direct, detailed images of the interface between a surface and a liquid, such as droplets that condense on it. Normally, that interface — the key to understanding wetting and water-shedding processes — is hidden from view by the droplets themselves, Varanasi explains, so most analysis has relied on computer modeling. In the new process, droplets are rapidly frozen in place on the surface, sliced in cross-section with an ion beam, and then imaged using a scanning electron microscope.

"The method relies on preserving the geometry of the samples through rapid freezing in liquid-nitrogen slush at minus 210 degrees Celsius [minus 346 degrees Fahrenheit]," Rykaczewski says. "The freezing rate is so fast (about 20,000 degrees Celsius per second) that water and other liquids do not crystalize, and their geometry is preserved."

The technique could be used to study many different interactions between liquids or gases and solid surfaces, Varanasi says. "It's a completely new technique. For the first time, we're able to see these details of these surfaces."

The enhanced condensation research received funding from the National Science Foundation (NSF), the Masdar-MIT Energy Initiative program, and the MIT Deshpande Center. The direct imaging research used NIST facilities, with funding from an NSF grant and the Dupont-MIT Alliance.

Written by: David L. Chandler, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell
MIT News Office

T: 617-253-8923

Caroline McCall
Media Relations Assistant

phone: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

News and information

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Videos/Movies

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Microbullet hits confirm graphene's strength: Rice University lab test material for suitability in body armor, spacecraft protection December 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Discoveries

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Announcements

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Tools

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Energy

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Water

Unraveling the light of fireflies December 17th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Iranian Scientists Refine Wastewater of Nuclear Power Plants Using Nanoparticles December 1st, 2014

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE