Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-Assembling Nanofilaments Enhance Drug Delivery

Abstract:
While most nanoparticles under development as drug delivery vehicles are spheres, a growing body of research suggests that cylindrical nanoparticles would perform even better at the twin goal of surviving in the blood stream long enough to reach their intended target and penetrating the cell wall to deliver their therapeutic payload inside of tumor cells where it is most needed. A team of investigators at the Northwestern University Center of Cancer Nanotechnology Excellence (Northwestern CCNE) has invented a cylindrical nanofilament structure that significantly reduces tumor growth in an animal model of breast cancer.

Self-Assembling Nanofilaments Enhance Drug Delivery

Bethesda, MD | Posted on October 21st, 2012

A team led by Vincent Cryns, who recently moved from Northwestern to the University of Wisconsin School of Medicine and Public Health, and Samuel Stupp, developed the self-assembling nanofibers. The investigators report their findings in the journal ACS Nano.

To create their tumor-inhibiting cylinders, the investigators turned to a family of molecules known as peptide amphiphiles. When put into water, these molecules, which can be made using automated peptide synthesizers, which spontaneously self-assemble into long, thin filaments. Depending on the choice of starting materials, these filaments can display large number of biologically active peptides on their surfaces that enable the fibers to serve as both drugs and drug deliver agents simultaneously without the need to further encapsulate anticancer agents within the nanostructure.

In earlier work, the Northwestern CCNE team had shown that one such nanofiber was more toxic to cancer cells than non-malignant cells, but this nanofiber was degraded rapidly in the blood stream. To improve the pharmacokinetic properties of their nanofiber, the investigators created a second peptide amphiphile, this one linked to poly(ethylene glycol) (PEG), a polymer widely used to increase the survival of nanoparticles in the blood stream. When the researchers mixed the peptide amphiphile with the PEGylated amphiphile, the two molecules together self-assembled into nanofilaments. By adding the PEGylated peptide amphiphile to the mix the investigators increased by eight-fold the amount of intact nanofiber that survived degradation by the enzyme trypsin compared to the original nanofiber.

To see if this nanofiber showed promise in a live animal studies, the investigators administered it to mice with human breast tumors. After dosing the animals twice weekly for three weeks, the researchers observed that the tumors in the treated animals grew much slower than in control animals. They also noted that the animals showed no signs of drug-related toxicities.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer.”

Related News Press

News and information

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Self Assembly

In-cell molecular sieve from protein crystal February 14th, 2017

Synthetic nanoparticles achieve the complexity of protein molecules: Study published in Science reveals the structure of the largest gold nanoparticles to-date and the self-assembly mechanisms behind their formation January 25th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Discoveries

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Announcements

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project