Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-Assembling Nanofilaments Enhance Drug Delivery

Abstract:
While most nanoparticles under development as drug delivery vehicles are spheres, a growing body of research suggests that cylindrical nanoparticles would perform even better at the twin goal of surviving in the blood stream long enough to reach their intended target and penetrating the cell wall to deliver their therapeutic payload inside of tumor cells where it is most needed. A team of investigators at the Northwestern University Center of Cancer Nanotechnology Excellence (Northwestern CCNE) has invented a cylindrical nanofilament structure that significantly reduces tumor growth in an animal model of breast cancer.

Self-Assembling Nanofilaments Enhance Drug Delivery

Bethesda, MD | Posted on October 21st, 2012

A team led by Vincent Cryns, who recently moved from Northwestern to the University of Wisconsin School of Medicine and Public Health, and Samuel Stupp, developed the self-assembling nanofibers. The investigators report their findings in the journal ACS Nano.

To create their tumor-inhibiting cylinders, the investigators turned to a family of molecules known as peptide amphiphiles. When put into water, these molecules, which can be made using automated peptide synthesizers, which spontaneously self-assemble into long, thin filaments. Depending on the choice of starting materials, these filaments can display large number of biologically active peptides on their surfaces that enable the fibers to serve as both drugs and drug deliver agents simultaneously without the need to further encapsulate anticancer agents within the nanostructure.

In earlier work, the Northwestern CCNE team had shown that one such nanofiber was more toxic to cancer cells than non-malignant cells, but this nanofiber was degraded rapidly in the blood stream. To improve the pharmacokinetic properties of their nanofiber, the investigators created a second peptide amphiphile, this one linked to poly(ethylene glycol) (PEG), a polymer widely used to increase the survival of nanoparticles in the blood stream. When the researchers mixed the peptide amphiphile with the PEGylated amphiphile, the two molecules together self-assembled into nanofilaments. By adding the PEGylated peptide amphiphile to the mix the investigators increased by eight-fold the amount of intact nanofiber that survived degradation by the enzyme trypsin compared to the original nanofiber.

To see if this nanofiber showed promise in a live animal studies, the investigators administered it to mice with human breast tumors. After dosing the animals twice weekly for three weeks, the researchers observed that the tumors in the treated animals grew much slower than in control animals. They also noted that the animals showed no signs of drug-related toxicities.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer.”

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project