Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > RNA Nanotechnology Shows Promise for Treating Cancer

Abstract:
A new study by researchers at the University of Kentucky Cancer Nanotechnology Platform Partnership (Kentucky CNPP) shows promise for developing ultrastable RNA nanoparticles that may help treat cancer by regulating cell function and binding to tumors without harming surrounding tissue. This work, led by Peixuan Guo and Mark Evers, was published in the journal Nano Today.

RNA Nanotechnology Shows Promise for Treating Cancer

Bethesda, MD | Posted on October 21st, 2012

The study uses RNA as a building block for the bottom-up fabrication of nanostructures. The researchers constructed ultrastable X-shaped RNA nanoparticles using re-engineered RNA fragments to carry up to four therapeutic and diagnostic modules. These RNA nanoparticles can include small interfering RNA (siRNA) for silencing genes, micro-RNA (miRNA) for regulating gene expression, RNA aptamers for targeting cancer cells, or RNA-based enzymes, also known as ribozymes, that can catalyze chemical reactions.

In their study, the investigators demonstrated that regulation of cellular functions progressively increased with the increasing number of functional modules in the nanoparticle. "RNA nanotechnology is an emerging field, but the instability and degradation of RNA nanoparticles have made many scientists flinch away from the research in RNA nanotechnology," Dr. Guo said. "We have addressed these issues, and now it is possible to produce RNA nanoparticles that are highly stable both chemically and thermodynamically in the test tube or in the body with great potential as therapeutic reagents."

The RNA nanoparticles displayed several favorable attributes: polyvalency, which allows simultaneous delivery of multiple functional molecules for achieving synergistic effects; modular design, which enables controlled self-assembly with defined structure; thermodynamic stability, which keeps the RNA nanoparticles intact in animal and human circulation systems where they exist at very low concentrations; and chemical stability, which makes the nanoparticles resistant to digestion by RNases, enzymes in blood that breakdown RNA.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View full paper - “Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers.”

Related News Press

News and information

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Nanomedicine

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Discoveries

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic