Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn Researchers Find New Way to Prevent Cracking in Nanoparticle Films

Nanoparticle films crack at certain thicknesses (left). By adding layers of thinner films, cracking can be avoided (right).
Nanoparticle films crack at certain thicknesses (left). By adding layers of thinner films, cracking can be avoided (right).

Abstract:
Making uniform coatings is a common engineering challenge, and, when working at the nanoscale, even the tiniest cracks or defects can be a big problem. New research from University of Pennsylvania engineers has shown a new way of avoiding such cracks when depositing thin films of nanoparticles.

Penn Researchers Find New Way to Prevent Cracking in Nanoparticle Films

Philadelphia, PA | Posted on October 15th, 2012

The research was led by graduate student Jacob Prosser and assistant professor Daeyeon Lee, both of the Department of Chemical and Biomolecular Engineering in Penn's School of Engineering and Applied Science. Graduate student Teresa Brugarolas and undergraduate student Steven Lee, also of Chemical and Biomolecular Engineering, and professor Adam Nolte of the Rose-Hulman Institute of Technology participated in the research.

Their work was published in the journal Nano Letters.

To generate a nanoparticle film, the desired particles are suspended in a suitable liquid, which is then thinly and evenly spread over the surface through a variety of physical methods. The liquid is then allowed to evaporate, but, as it dries, the film can crack like mud in the sun.

"One method for preventing cracking is modifying the suspension's chemistry by putting binding additives in there," Prosser said. "But that is essentially adding a new material to the film, which may ruin its properties."

This dilemma is highlighted in the case of electrodes, the contact points in many electrical devices that transfer electricity. High-end devices, like certain types of solar cells, have electrodes composed of nanoparticle films that conduct electrons, but cracks in the films act as insulators. Adding a binder to the films would only compound the problem.

"These binders are usually polymers, which are insulators themselves," Lee said. "If you use them, you're not going to get the targeted property, the conductivity, that you want."

Engineers can prevent cracks with alternative drying methods, but these involve ultra-high temperatures or pressures and thus expensive and complicated equipment. A cheap and efficient method for preventing cracks would be a boon for any number of industrial processes.

The ubiquity of cracking in this context, however, means that researchers know the "critical cracking thickness" for many materials. The breakthrough came when Prosser tried making a film thinner than this threshold, then stacking them together to make a composite of the desired thickness.

"I was thinking about how, in the painting of buildings and homes, multiple coats are used," Prosser said. "One reason for that is to avoid cracking and peeling. I thought it could work for these films as well, so I gave it a try."

"This is one of those things where, once you figure it out," Lee said, "it's so obvious, but somehow this method has evaded everyone all these years."

One reason this approach may have remained untried is that it is counterintuitive that it should work at all.

The method the researchers used to make the films is known as "spin-coating." A precise amount of the nanoparticle suspension in this case, silica spheres in water is spread over the target surface. The surface is then rapidly spun, causing centrifugal acceleration to thin the suspension over the surface in a uniform layer. The suspension then dries with continued rotation, causing the water to evaporate and leaving the silica spheres behind in a compacted arrangement.

But to make a second layer over this first, another drop of liquid suspension would need to be placed on the dried nanoparticles, something that would normally wash them away. However, the researchers were surprised when the dried layers remained intact after the process was repeated 13 times; the exact mechanism by which they remained stable is something of a mystery.

"We believe that the nanoparticles are staying on the surface," Lee said, "because covalent bonds are being formed between them even though we're not exposing them to high temperatures. The inspiration for that hypothesis came from our colleague Rob Carpick. His recent Nature paper was all about how silica-silica surfaces form bonds at room temperature; we think this will work with other kinds of metal oxides."

Future research will be necessary to pin down this mechanism and apply it to new types of nanoparticles.

The research was supported by the National Science Foundation and the Penn Materials Research Science and Engineering Center.

####

For more information, please click here

Contacts:
Office of University Communications
200 Sansom Place East
3600 Chestnut Street
Philadelphia, PA
19104-6106
215-898-8721

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission September 11, 2015 September 1st, 2015

Thin films

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

Discoveries

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Announcements

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Waste coffee used as fuel storage: Scientists have developed a simple process to treat waste coffee grounds to allow them to store methane September 2nd, 2015

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Research partnerships

Sustainable nanotechnology center September 1st, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic