Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Seek Way to Make Solar Cells Ultra-Thin, Flexible: National Science Foundation Grant to Further Study of Materials Developed With Nanotechnology

Dr. Anton Malko (left) works in the lab with Hue Minh Nguyen, a physics graduate student who has assisted in the research.
Dr. Anton Malko (left) works in the lab with Hue Minh Nguyen, a physics graduate student who has assisted in the research.

Abstract:
Researchers at The University of Texas at Dallas are developing nanotechnology that could lead to a new platform for solar cells, one that could drive the development of lighter, flexible and more versatile solar-powered technology than is currently available.

Researchers Seek Way to Make Solar Cells Ultra-Thin, Flexible: National Science Foundation Grant to Further Study of Materials Developed With Nanotechnology

Dallas, TX | Posted on October 9th, 2012

The National Science Foundation recently awarded a $390,000 grant to Dr. Anton Malko and Dr. Yuri Gartstein, both in the Department of Physics, and Dr. Yves Chabal in the Department of Materials Science and Engineering to further explore their research on the feasibility of ultrathin-film photovoltaic devices, which convert light from the sun into electric power.

"Traditional silicon solar cells that are commercially available are made from silicon that is a couple of hundred microns thick," Malko said. "Our goal is to reduce that by a hundred times, down to about one micron thick, while at the same time maintaining efficiency."

A micron, or micrometer, is a unit of measurement, equal to one millionth of a meter. For comparison, the diameter of a human hair is about 100 microns, and a U.S. dime coin is about 1,250 microns thick.

While the scale of the research objects is tiny, their impact could be substantial.

"Solar cells that are 100 microns thick are rigid and fragile," Malko said. "At the thickness we are investigating, devices would not only be lighter, but they also become flexible. There is a large market and application niche for flexible solar cells, such as on clothing or backpacks for hikers, or in situations where you need portable sources to power electronics."

The UT Dallas approach to building solar cells involves the use of nanosized crystal particles called quantum dots, which absorb light much better than silicon. The energy they absorb is then transferred into silicon and converted into an electric signal.

The researchers construct their experimental photovoltaic structures layer by layer, starting with an ultrathin layer of silicon, a so-called nanomembrane about one-tenth of a micron thick. On top of that, with the aid of special molecular "linkers," layers of accurately positioned quantum dots are added.

"This is not yet an engineering project, it's a research project," Gartstein said. "We believe we are asking interesting scientific questions and researching concepts that might eventually lead to devices."

Initial findings from the research were published recently in the journal ACS Nano.

"The key point of our research is to characterize the way energy is transferred from the quantum dots through the layers to the silicon, as well as to determine how we might exploit those properties and optimize the arrangement of the quantum dots, the thickness of the layers and other aspects of the structure," Malko said.

The cross-disciplinary research involves not only proficiency in experimental and theoretical physics, which Malko and Gartstein provide. Materials science and nanotechnology expertise is also crucial. A key member of the team is Dr. Oliver Seitz, a postdoctoral researcher in Chabal's laboratory, who carried out the delicate and precisely controlled process of actually building the test structures.

"This project, conceived and initiated by Anton Malko, has been exciting at all stages of research," said Chabal, holder of the Texas Instruments Distinguished University Chair in Nanoelectronics. "It has engaged my group into an exciting application relying on the chemical control of surfaces we have been developing."

Gartstein added: "This is one of those cases where the word ‘synergy' truly applies. As a theorist, I can come up with some ideas and do some calculations, but I cannot build these things. In materials science, Dr. Seitz actually implements our joint ideas to make the physical samples. Then in Dr. Malko's lab, ultrafast laser spectroscopy is used to physically measure the relevant processes and properties. Hue Minh Nguyen, a physics graduate student, contributed tremendously to this effort.

"It's been a great pleasure to work together in this atmosphere of a true collaboration," he said.

####

For more information, please click here

Contacts:
Amanda Siegfried
UT Dallas
(972) 883-4335


Office of Media Relations
UT Dallas
(972) 883-2155

Copyright © University of Texas at Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The School of Materials at the University of Manchester utilise Deben’s mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultrathin device harvests electricity from human motion July 23rd, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Announcements

The School of Materials at the University of Manchester utilise Deben’s mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Energy

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Quantum Dots/Rods

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Solar/Photovoltaic

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project