Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene membranes may lead to enhanced natural gas production, less CO2 pollution, says CU study

This illustration depicts a single molecular-sized pore in a graphene membrane. The membrane is separating carbon dioxide from nitrogen. A carbon dioxide molecule is passing through the pore while nitrogen molecules are too large to pass through. Illustration by Zhangmin Huang
This illustration depicts a single molecular-sized pore in a graphene membrane. The membrane is separating carbon dioxide from nitrogen. A carbon dioxide molecule is passing through the pore while nitrogen molecules are too large to pass through.

Illustration by Zhangmin Huang

Abstract:
Engineering faculty and students at the University of Colorado Boulder have produced the first experimental results showing that atomically thin graphene membranes with tiny pores can effectively and efficiently separate gas molecules through size-selective sieving.

Graphene membranes may lead to enhanced natural gas production, less CO2 pollution, says CU study

Boulder, CO | Posted on October 8th, 2012

The findings are a significant step toward the realization of more energy-efficient membranes for natural gas production and for reducing carbon dioxide emissions from power plant exhaust pipes.

Mechanical engineering professors Scott Bunch and John Pellegrino co-authored a paper in Nature Nanotechnology with graduate students Steven Koenig and Luda Wang detailing the experiments. The paper was published Oct. 7 in the journal's online edition.

The research team introduced nanoscale pores into graphene sheets through ultraviolet light-induced oxidative "etching," and then measured the permeability of various gases across the porous graphene membranes. Experiments were done with a range of gases including hydrogen, carbon dioxide, argon, nitrogen, methane and sulphur hexaflouride -- which range in size from 0.29 to 0.49 nanometers -- to demonstrate the potential for separation based on molecular size. One nanometer is one billionth of a meter.

"These atomically thin, porous graphene membranes represent a new class of ideal molecular sieves, where gas transport occurs through pores which have a thickness and diameter on the atomic scale," said Bunch.

Graphene, a single layer of graphite, represents the first truly two-dimensional atomic crystal. It consists of a single layer of carbon atoms chemically bonded in a hexagonal "chicken wire" lattice -- a unique atomic structure that gives it remarkable electrical, mechanical and thermal properties.

"The mechanical properties of this wonder material fascinate our group the most," Bunch said. "It is the thinnest and strongest material in the world, as well as being impermeable to all standard gases."

Those characteristics make graphene an ideal material for creating a separation membrane because it is durable and yet doesn't require a lot of energy to push molecules through it, he said.

Other technical challenges will need to be overcome before the technology can be fully realized. For example, creating large enough sheets of graphene to perform separations on an industrial scale, and developing a process for producing precisely defined nanopores of the required sizes are areas that need further development. The CU-Boulder experiments were done on a relatively small scale.

The importance of graphene in the scientific world was illustrated by the 2010 Nobel Prize in physics that honored two scientists at Manchester University in England, Andre K. Geim and Konstantin Novoselov, for producing, isolating, identifying and characterizing graphene. Scientists see a myriad of potential for graphene as research progresses, from making new and better display screens and electric circuits to producing tiny biomedical devices.

The research was sponsored by the National Science Foundation; the Membrane Science, Engineering and Technology Center at CU-Boulder; and the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano Electromechanical Transducers at CU-Boulder.

####

For more information, please click here

Contacts:
Scott Bunch
303-492-6802


Carol Rowe
303-492-7426

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Military

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project