Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > More efficient all-organic catalysts in fuel cells

121003_organisk_katalysator
121003_organisk_katalysator

Abstract:
Organic catalysts are a breakthrough in the quest for inexpensive and efficient materials for environmentally friendly production of energy in fuel cells. A new study by physicists at Umeå University in Sweden, published in ACS Nano, provides better knowledge about key processes in producing these catalysts.

More efficient all-organic catalysts in fuel cells

Stockholm, Sweden | Posted on October 7th, 2012

The world's needs for energy and raw materials are constantly growing, and the search for readily accessible and inexpensive material for energy applications is driving research teams all around the world. Fuel cells based on hydrogen and oxygen, for example, can convert stored chemical energy into electrical energy in an environmentally friendly way, as the byproduct is simply water. For this conversion to occur efficiently, the electrodes in the fuel cells contain various forms of catalysts.

A major problem with these catalysts is that they are currently being made of alloys of platinum, ruthenium, and other noble metals. These noble metals are not only extremely expensive but also rare and difficult to extract. The pressure to find other more readily available catalysts is therefore very strong, and hence a report in Science about three years ago that an all-organic catalyst based on nitrogen-doped carbon nanotubes could catalyze the splitting of oxygen just as effectively as platinum, evidently drew a great deal of attention.

Since then research in this field has been intensive, but yet many questions remain regarding the mechanism and efficiency of catalytic processes that occur at the defects where nitrogen atoms have replaced carbon atoms in the carbon nanotubes. A normal "ideal" carbon nanotube consists entirely of carbon atoms, but in practice most materials have defects. For example, it may be that an atom is missing at a site where it normally should be found, or that a carbon atom has been replaced by a foreign atom.

"In our case we deliberately created defects in the carbon nanotubes by replacing some of the carbon atoms with nitrogen atoms. We did this to create local centers around these defects that have an increased electron density. The increase in electron density leads to the desired catalytic properties," says Thomas Wågberg, associate professor at the Department of Physics.

The study shows that the catalytic effect is much larger around certain types of nitrogen defects than around other types.

"We also show that it's possible to use simple heat treatment to convert inefficient nitrogen defects into highly efficient defects," says Thomas Wågberg.

Similar materials that the research group is studying also show great potential to catalyze other processes, such as the reverse process of splitting water into oxygen and hydrogen, which is referred to as artificial photosynthesis.

Behind the study is a research team at the Department of Physics, directed by Associate Professor Thomas Wågberg and including Tiva Sharifi, Dr. Guangzhi Hu, and Dr. Xueen Jia, with funding from, among others, the Knut and Alice Wallenberg Foundation, the Swedish Research Council, ÅForsk (Ångpanneföreningen's Foundation for Research and Development), and the Kempe Foundation.

####

For more information, please click here

Contacts:
Ingrid Söderbergh
Umeå University
+46 90-786 60 24


For more information, please contact:
Thomas Wågberg
Department of Physics
Umeå University
Telephone: +46(0)90-786 59 93

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Chemistry

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Discoveries

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Energy

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Fuel Cells

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Researchers Pump Up Oil Accumulation in Plant Leaves: Method could greatly boost energy content of crops grown for fuel October 8th, 2014

Platinum meets its match in quantum dots from coal: Rice University's cheap hybrid outperforms rare metal as fuel-cell catalyst October 1st, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE