Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UGA researchers boost efficacy of drugs by using nanoparticles to target ‘powerhouse of cells’ - Positive results shown for cancer, Alzheimer’s and obesity drugs

Shanta Dhar, right, an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and doctoral student Sean Marrache have fabricated nanoparticles that boost the effectiveness of drugs by delivering them to the mitochondria of cells.
Shanta Dhar, right, an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences, and doctoral student Sean Marrache have fabricated nanoparticles that boost the effectiveness of drugs by delivering them to the mitochondria of cells.

Abstract:
Nanoparticles have shown great promise in the targeted delivery of drugs to cells, but researchers at the University of Georgia have refined the drug delivery process further by using nanoparticles to deliver drugs to a specific organelle within cells.

UGA researchers boost efficacy of drugs by using nanoparticles to target ‘powerhouse of cells’ - Positive results shown for cancer, Alzheimer’s and obesity drugs

Athens, GA | Posted on September 21st, 2012

By targeting mitochondria, often called "the powerhouse of cells," the researchers increased the effectiveness of mitochondria-acting therapeutics used to treat cancer, Alzheimer's disease and obesity in studies conducted with cultured cells.

"The mitochondrion is a complex organelle that is very difficult to reach, but these nanoparticles are engineered so that they do the right job in the right place," said senior author Shanta Dhar, an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences.

Dhar and her co-author, doctoral student Sean Marrache, used a biodegradable, FDA-approved polymer to fabricate their nanoparticles and then used the particles to encapsulate and test drugs that treat a variety of conditions. Their results were published this week in early edition of the journal Proceedings of the National Academy of Sciences.

To test the effectiveness of their drug targeting system against cancer, they encapsulated the drug lonidamine, which works by inhibiting energy production in the mitochondria, and, separately, a form of the antioxidant vitamin E. They then treated cultured cancer cells and found that mitochondrial targeting increased the effectiveness of the drugs by more than 100 times when compared to the drugs alone and by five times when compared to the delivery of drugs with nanoparticles that target the outside of cells.

Similarly, the compound curcumin has shown promise in inhibiting formation of the amyloid plaques that are a hallmark of Alzheimer's disease, but it quickly degrades in the presence of light and is broken down rapidly by the body. By encapsulating curcumin in the mitochondria-targeting nanoparticles, however, the researchers were able to restore the ability of brain cells in culture to survive despite the presence of a compound that encourages plaque formation. Nearly 100 percent of the cells treated with the mitochondria-targeting nanoparticles survived in the presence of the plaque-inducing compound, compared to 67 percent of cells treated with free curcumin and 70 percent of cells treated with nanoparticles that target the outside of cells.

Finally, the researchers encapsulated the obesity drug 2,4-DNP—which works by making energy production in the mitochondria less efficient—in their nanoparticles and found that it reduced the production of fat by cultured cells known as preadipocytes by 67 percent compared to cells treated with the drug alone and by 61 percent of cells treated with nanoparticles that target the outside of cells.

"A lot of diseases are associated with dysfunctional mitochondria, but many of the drugs that act on the mitochondria can't get there," Marrache said. "Rather than try to alter the drugs, which can reduce their effectiveness, we encapsulate them in these nanoparticles and precisely deliver them to the mitochondria."

Dhar said that getting drugs to the mitochondria is no simple feat. Upon entering cells, nanoparticles enter a sorting center known as the endosome. The first thing Dhar and Marrache had to demonstrate was that the nanoparticles escape from the endosome and don't end up in the cells' disposal center, the lysosome.

The mitochondria itself is protected by two membranes separated by an interstitial space. The outer membrane only permits molecules of a certain size to pass through, while the inner membrane only permits molecules of a given range of charges to pass. The researchers constructed a library of nanoparticles and tested them until they identified the optimum size range—64 to 80 nanometers, or approximately 1,000 times finer than the width of a human hair—and an optimum surface charge, plus 34 millivolts.

Dhar notes the components they used to create the nanoparticles are FDA approved and that their methods are highly reproducible and therefore have the potential to be translated into clinical settings. The researchers are currently testing their targeted delivery system in rodents and say that preliminary results are promising.

"Mitochondrial dysfunctions cause many disorders in humans," Dhar said, " so there are several potential applications for this delivery system."

The research was supported by National Institutes of Health startup grant P30 GM 092378 and by the UGA Office of the Vice President for Research.

####

For more information, please click here

Contacts:
Shanta Dhar

706-542-1012

Writer:
Sam Fahmy
News Director
Franklin College of Arts and Sciences
706/542-6049

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Chemistry, Department of:

Franklin College of Arts and Sciences

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project