Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Gives Insight Into Graphene-Metal Junctions

Abstract:
Graphene, an atom-thin layer of pure carbon, appears to have many of the properties needed to usher in the next generation of electronic devices. The next step in building those devices, however, requires creating junctions that connect graphene to the "external world" through at least two metal wires. A "two-terminal junction" is a graphene "ribbon" with two metal contacts. A University of Arkansas researcher and his colleagues have developed a better understanding of how these graphene-metal interfaces affect the movement of electrons through two-terminal junctions.

Research Gives Insight Into Graphene-Metal Junctions

Fayetteville, AR | Posted on September 19th, 2012

Salvador Barraza-Lopez, assistant professor of physics, Markus Kindermann of Georgia Institute of Technology and M.Y. Chou of Georgia Tech and the Academia Sinica in Taiepi, Taiwan, report their findings in the journal NanoLetters (Nano Lett. 12, pp 3424 [2012]).

"If you want to use graphene for devices, you want to understand what will happen with metal contacts," Barraza-Lopez said.

Current theories about graphene devices assume that the contacts that move electricity from one point to another will also be composed of "doped" graphene, meaning that the contacts have a large amount of electronic charge, as actual metals would have. But contacts in real devices are made of transition metals, and those metal contacts will form bonds with graphene.

"When you form covalent bonds, you destroy the unique electronic properties of graphene," Barraza-Lopez said. "So we thought it was important to calculate the transport of electrons going beyond the assumption that the contacts themselves are (doped) graphene."

He and his colleagues set out to look at how electrons can move through graphene junctions with titanium, which is used by many experimental teams as a contact with graphene: they considered the material properties of actual junctions, and contrasted their findings with more basic models already available. Their calculations were done using the principles of quantum mechanics and state-of-the-art computational facilities.

Within quantum mechanics, the electrons at these graphene-metal junctions behave much like a light beam does when it is shone on a crystal some of the light scatters and some of it goes through. For graphene junctions the electronic transparency of the material indicates how many of the electrons on one contact make it through the other metal contact. In this work, the researchers have provided the most accurate calculations of the electronic transparency of realistic graphene-metal junctions to date.

"Our results shed light on the complex behavior of graphene junctions and pave the way for realistic design of potential electronic devices," the researchers wrote.

####

For more information, please click here

Contacts:
Salvador Barraza-Lopez
assistant professor, physics
J. William Fulbright College of Arts and Sciences
479-575-5933


Melissa Lutz Blouin
senior director of academic communications
University Relations
479-575-5555

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

New graphene-based system could help us see electrical signaling in heart and nerve cells: Berkeley-Stanford team creates a system to visualize faint electric fields December 19th, 2016

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project