Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research Gives Insight Into Graphene-Metal Junctions

Abstract:
Graphene, an atom-thin layer of pure carbon, appears to have many of the properties needed to usher in the next generation of electronic devices. The next step in building those devices, however, requires creating junctions that connect graphene to the "external world" through at least two metal wires. A "two-terminal junction" is a graphene "ribbon" with two metal contacts. A University of Arkansas researcher and his colleagues have developed a better understanding of how these graphene-metal interfaces affect the movement of electrons through two-terminal junctions.

Research Gives Insight Into Graphene-Metal Junctions

Fayetteville, AR | Posted on September 19th, 2012

Salvador Barraza-Lopez, assistant professor of physics, Markus Kindermann of Georgia Institute of Technology and M.Y. Chou of Georgia Tech and the Academia Sinica in Taiepi, Taiwan, report their findings in the journal NanoLetters (Nano Lett. 12, pp 3424 [2012]).

"If you want to use graphene for devices, you want to understand what will happen with metal contacts," Barraza-Lopez said.

Current theories about graphene devices assume that the contacts that move electricity from one point to another will also be composed of "doped" graphene, meaning that the contacts have a large amount of electronic charge, as actual metals would have. But contacts in real devices are made of transition metals, and those metal contacts will form bonds with graphene.

"When you form covalent bonds, you destroy the unique electronic properties of graphene," Barraza-Lopez said. "So we thought it was important to calculate the transport of electrons going beyond the assumption that the contacts themselves are (doped) graphene."

He and his colleagues set out to look at how electrons can move through graphene junctions with titanium, which is used by many experimental teams as a contact with graphene: they considered the material properties of actual junctions, and contrasted their findings with more basic models already available. Their calculations were done using the principles of quantum mechanics and state-of-the-art computational facilities.

Within quantum mechanics, the electrons at these graphene-metal junctions behave much like a light beam does when it is shone on a crystal — some of the light scatters and some of it goes through. For graphene junctions the electronic transparency of the material indicates how many of the electrons on one contact make it through the other metal contact. In this work, the researchers have provided the most accurate calculations of the electronic transparency of realistic graphene-metal junctions to date.

"Our results shed light on the complex behavior of graphene junctions … and pave the way for realistic design of potential electronic devices," the researchers wrote.

####

For more information, please click here

Contacts:
Salvador Barraza-Lopez
assistant professor, physics
J. William Fulbright College of Arts and Sciences
479-575-5933


Melissa Lutz Blouin
senior director of academic communications
University Relations
479-575-5555

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Graphene/ Graphite

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Research partnerships

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project