Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Abstract:
Iranian researchers from Birjand University managed to provide an efficient means for rapid and selective adsorption of uranyl ions from aqueous samples with the help of an external magnetic field.

New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Tehran, Iran | Posted on September 6th, 2012

The mentioned research group has set its main goal on preparing selective and environmentally friendly adsorbents for fast separation and concentration of uranyl and thorium from aqueous solutions, for quite a while. According to their latest findings, modified ferromagnetic iron oxide nanoparticles hold promise for enabling rapid separation of uranyl ions from water samples.

To fulfill the goal, magnetic nanoparticles coated by silica nanoparticles had to be synthesized in the first step.

"Within the initial step of our work, ferromagnetic Fe3O4 nanoparticles with dimensions less than 20 nm were prepared through the sol-gel method. Then, these particles were coated by nano silica particles and modified by amino propyl triethoxy silane and quercetin, subsequently. The ultimate substance represented a novel and efficient adsorbent for uranyl ions from aqueous environments," Dr. Susan Sadeqi, the chief researcher of the group, explained.

In addition to being eco-friendly and efficient, the proposed adsorbent is regenerable and exhibits high selectivity with respect to uranyl.

"Although magnetic nanoparticles, in general, can realize the separation of uranyl and other ionic species, they cannot handle complex matrices (samples comprising of several ion species) as they lack selectivity. That is in fact why we modified the initially-synthesized nanoparticles," Sadeqi added.

Thanks to the advantages of the above-mentioned adsorbent material, they are anticipated to find applications in water and wastewater treatment facilities.

An elaborate scientific report discussing the details of this research work has been recently published in the Journal of Hazardous Materials, volume 215-216, 2012, pages 208 to 216.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Chemistry

New reaction for the synthesis of nanostructures July 21st, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic