Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Abstract:
Iranian researchers from Birjand University managed to provide an efficient means for rapid and selective adsorption of uranyl ions from aqueous samples with the help of an external magnetic field.

New Method for Rapid Separation of Uranyl Ions from Aqueous Solutions

Tehran, Iran | Posted on September 6th, 2012

The mentioned research group has set its main goal on preparing selective and environmentally friendly adsorbents for fast separation and concentration of uranyl and thorium from aqueous solutions, for quite a while. According to their latest findings, modified ferromagnetic iron oxide nanoparticles hold promise for enabling rapid separation of uranyl ions from water samples.

To fulfill the goal, magnetic nanoparticles coated by silica nanoparticles had to be synthesized in the first step.

"Within the initial step of our work, ferromagnetic Fe3O4 nanoparticles with dimensions less than 20 nm were prepared through the sol-gel method. Then, these particles were coated by nano silica particles and modified by amino propyl triethoxy silane and quercetin, subsequently. The ultimate substance represented a novel and efficient adsorbent for uranyl ions from aqueous environments," Dr. Susan Sadeqi, the chief researcher of the group, explained.

In addition to being eco-friendly and efficient, the proposed adsorbent is regenerable and exhibits high selectivity with respect to uranyl.

"Although magnetic nanoparticles, in general, can realize the separation of uranyl and other ionic species, they cannot handle complex matrices (samples comprising of several ion species) as they lack selectivity. That is in fact why we modified the initially-synthesized nanoparticles," Sadeqi added.

Thanks to the advantages of the above-mentioned adsorbent material, they are anticipated to find applications in water and wastewater treatment facilities.

An elaborate scientific report discussing the details of this research work has been recently published in the Journal of Hazardous Materials, volume 215-216, 2012, pages 208 to 216.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project