Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microwave ovens may help produce lower cost solar energy technology

Abstract:
The same type of microwave oven technology that most people use to heat up leftover food has found an important application in the solar energy industry, providing a new way to make thin-film photovoltaic products with less energy, expense and environmental concerns.

Microwave ovens may help produce lower cost solar energy technology

Corvallis, OR | Posted on August 24th, 2012

Engineers at Oregon State University have for the first time developed a way to use microwave heating in the synthesis of copper zinc tin sulfide, a promising solar cell compound that is less costly and toxic than some solar energy alternatives.

The findings were published in Physica Status Solidi A, a professional journal.

"All of the elements used in this new compound are benign and inexpensive, and should have good solar cell performance," said Greg Herman, an associate professor in the School of Chemical, Biological and Environmental Engineering at OSU.

"Several companies are already moving in this direction as prices continue to rise for some alternative compounds that contain more expensive elements like indium," he said. "With some improvements in its solar efficiency this new compound should become very commercially attractive."

These thin-film photovoltaic technologies offer a low cost, high volume approach to manufacturing solar cells. A new approach is to create them as an ink composed of nanoparticles, which could be rolled or sprayed - by approaches such as old-fashioned inkjet printing - to create solar cells.

To further streamline that process, researchers have now succeeded in using microwave heating, instead of conventional heating, to reduce reaction times to minutes or seconds, and allow for great control over the production process. This "one-pot" synthesis is fast, cheap and uses less energy, researchers say, and has been utilized to successfully create nanoparticle inks that were used to fabricate a photovoltaic device.

"This approach should save money, work well and be easier to scale up at commercial levels, compared to traditional synthetic methods," Herman said. "Microwave technology offers more precise control over heat and energy to achieve the desired reactions."

Funding and support for this research was provided by Sharp Laboratories of America, the Oregon Nanoscience and Microtechnologies Institute, and the Oregon Process Innovation Center for Sustainable Solar Cell Manufacturing, an Oregon BEST signature research facility.

####

About Oregon State University
The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

For more information, please click here

Contacts:
Greg Herman

541-737-2496

Copyright © Oregon State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

Printing/Lithography/Inkjet/Inks

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic