Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Polymer Nanoparticle Overcomes Anticancer Drug Resistance

Abstract:
In a nanotechnology two-for-one, researchers at the Johns Hopkins University Center of Cancer Nanotechnology Excellence (Hopkins CCNE) have created a polymer nanoparticle that overcomes tumor resistance to the common anticancer agent doxorubicin and that protects the heart against drug-triggered damage, a therapy-ending side effect that limits doxorubicin's effectiveness. This novel nanoparticle incorporates both doxorubicin and curcumin, a major component of the bright yellow spice turmeric.

Polymer Nanoparticle Overcomes Anticancer Drug Resistance

Bethesda, MD | Posted on August 21st, 2012

This work was led by Anirban Maitra, a principal investigator in the Hopkins CCNE. Dr. Maitra and his colleagues published the results of their work in the journal Oncotarget.

Numerous studies over the past few years have shown that high doses of curcumin can overcome the resistance to multiple anticancer agents that many, if not most, tumors develop over time. Curcumin, however, is poorly soluble in the blood stream and as a result, getting high enough levels of this agent to tumors has proven challenging. Dr. Maitra's approach to solving this problem has been to use polymer nanoparticles to deliver curcumin to tumors. He and his colleagues have published several papers over the past two years describing the development and behavior of their curcumin-nanoparticle formulation and its ability to make drug-resistant tumors susceptible to chemotherapy.

In their current paper, the investigators discuss how they prepared a polymer nanoparticle containing both curcumin and doxorubicin. Both in vitro and animal tests demonstrated that this formulation had striking anticancer activity in models of multiple myeloma, leukemia, and prostate and ovarian cancers. Perhaps equally important, the animals treated with the nanoparticle did not experience any cardiac toxicity or bone marrow suppression, even at cumulative doses that normally trigger cardiac toxicity by free doxorubicin or liposome-encapsulated doxorubicin, which was the first nanoparticle drug approved for use in treating cancer in humans and is widely used in treating breast cancer. Further examination of the heart-protecting characteristics of this formulation showed that encapsulating doxorubicin in a polymer nanoparticle spared heart muscle cells from oxidative stress normally triggered by doxorubicin.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

- View abstract “A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy.”

Related News Press

News and information

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Nanomedicine

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Discoveries

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE