Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Laser Research Shows Promise for Cancer Treatment: New insights gained on how lasers generate ions in dense plasmas

Sasi Palaniyappan (right) and Rahul Shah (left) inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target.
Sasi Palaniyappan (right) and Rahul Shah (left) inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target.

Abstract:
Scientists at Los Alamos National Laboratory have observed for the first time how a laser penetrates dense, electron-rich plasma to generate ions. The process has applications for developing next generation particle accelerators and new cancer treatments.

Laser Research Shows Promise for Cancer Treatment: New insights gained on how lasers generate ions in dense plasmas

Los Alamos, NM | Posted on August 20th, 2012

The results, published online August 19 in Nature Physics, also confirm predictions made more than 60 years ago about the fundamental physics of laser-plasma interaction. Plasmas dense with electrons normally reflect laser light like a mirror. But a strong laser can drive those electrons to near the speed of light, making the plasma transparent and accelerating the plasma ions.

"That idea has been met with some skepticism in the field," said Rahul Shah of LANL's plasma physics group. "We think that we've settled that controversy."

The team, which also included researchers from the Max Planck Institute for Quantum Optics in Garching, Germany and Queens University in Belfast, UK, used the 200 trillion-watt short-pulse TRIDENT laser at Los Alamos National Laboratory to observe the transparency phenomenon at 50 femtosecond resolution. Until now, those dynamics have been witnessed only in computer simulations.

The team found close agreement between the model and their experiments, which confirms what Los Alamos National Laboratory scientists have long suspected—that directing a short-pulse laser at a very thin carbon foil target will make the foil transparent to the laser.

"In a sense it also validates the simulation code that researchers have been using for some time," said Sasi Palaniyappan of LANL's plasma physics group. "At the same time it also tells us that we're doing an experiment that's as close as possible to simulation."

The results will help advance work to control the shape and timing of laser pulses, precision that is necessary for developing next-generation, laser-driven particle accelerators, he said. The researchers have recently been awarded internal laboratory funding from the office of Laboratory Directed Research and Development (LDRD) to pursue these applications.

They now plan to add a second foil target, which could benefit from further focusing and faster turn-on of the laser light transmitted through the first foil. One application of the resulting ultra-short ion bunches is to rapidly heat material and study the ensuing dynamics.

Particles accelerated by conventional accelerators aren't fast enough for such physics experiments. Also, energetic ions are applicable to cancer therapy. A more compact, laser-driven ion source would make treatment less expensive and more accessible to patients.

This work was sponsored by the Los Alamos National Laboratory Directed Research and Development program, U.S. Department of Energy, the U.S. Office of Fusion Energy Sciences and the U.S. Domestic Nuclear Detection Office.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Sarah Keller
(505) 667-7000

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is titled “Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas.” It can be accessed via digital object number http://dx.doi.org/10.1038/NPHYS2390. The DOI can be used to retrieve the abstract and full text (Nature Physics abstracts are available to everyone, full text only to subscribers).

Related News Press

News and information

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Physics

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Laboratories

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

A new type of quantum bits July 29th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Nanomedicine

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Discoveries

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Announcements

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

A new type of quantum bits July 29th, 2016

Photonics/Optics/Lasers

Vortex laser offers hope for Moore's Law: The optics advancement may solve an approaching data bottleneck by helping to boost computing power and information transfer rates tenfold July 30th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic