Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Laser Research Shows Promise for Cancer Treatment: New insights gained on how lasers generate ions in dense plasmas

Sasi Palaniyappan (right) and Rahul Shah (left) inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target.
Sasi Palaniyappan (right) and Rahul Shah (left) inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin foil target.

Abstract:
Scientists at Los Alamos National Laboratory have observed for the first time how a laser penetrates dense, electron-rich plasma to generate ions. The process has applications for developing next generation particle accelerators and new cancer treatments.

Laser Research Shows Promise for Cancer Treatment: New insights gained on how lasers generate ions in dense plasmas

Los Alamos, NM | Posted on August 20th, 2012

The results, published online August 19 in Nature Physics, also confirm predictions made more than 60 years ago about the fundamental physics of laser-plasma interaction. Plasmas dense with electrons normally reflect laser light like a mirror. But a strong laser can drive those electrons to near the speed of light, making the plasma transparent and accelerating the plasma ions.

"That idea has been met with some skepticism in the field," said Rahul Shah of LANL's plasma physics group. "We think that we've settled that controversy."

The team, which also included researchers from the Max Planck Institute for Quantum Optics in Garching, Germany and Queens University in Belfast, UK, used the 200 trillion-watt short-pulse TRIDENT laser at Los Alamos National Laboratory to observe the transparency phenomenon at 50 femtosecond resolution. Until now, those dynamics have been witnessed only in computer simulations.

The team found close agreement between the model and their experiments, which confirms what Los Alamos National Laboratory scientists have long suspected—that directing a short-pulse laser at a very thin carbon foil target will make the foil transparent to the laser.

"In a sense it also validates the simulation code that researchers have been using for some time," said Sasi Palaniyappan of LANL's plasma physics group. "At the same time it also tells us that we're doing an experiment that's as close as possible to simulation."

The results will help advance work to control the shape and timing of laser pulses, precision that is necessary for developing next-generation, laser-driven particle accelerators, he said. The researchers have recently been awarded internal laboratory funding from the office of Laboratory Directed Research and Development (LDRD) to pursue these applications.

They now plan to add a second foil target, which could benefit from further focusing and faster turn-on of the laser light transmitted through the first foil. One application of the resulting ultra-short ion bunches is to rapidly heat material and study the ensuing dynamics.

Particles accelerated by conventional accelerators aren't fast enough for such physics experiments. Also, energetic ions are applicable to cancer therapy. A more compact, laser-driven ion source would make treatment less expensive and more accessible to patients.

This work was sponsored by the Los Alamos National Laboratory Directed Research and Development program, U.S. Department of Energy, the U.S. Office of Fusion Energy Sciences and the U.S. Domestic Nuclear Detection Office.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Sarah Keller
(505) 667-7000

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is titled “Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas.” It can be accessed via digital object number http://dx.doi.org/10.1038/NPHYS2390. The DOI can be used to retrieve the abstract and full text (Nature Physics abstracts are available to everyone, full text only to subscribers).

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Laboratories

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Laboratory Management Web Application Goes Nationwide January 9th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project