Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nature: Electronic Read-out of Quantum Bits: Quantum State of a Single Atomic Nucleus Can Be Controlled and Determined by Simple Electrodes / Basis of Quantum Computers and Nano Spintronics

TbPc2 molecule quantum-bit device. Electrons (red) from the electrodes jump onto the molecule reading out the electronic spin (orange) and the nuclear spin (green) (Graphics: C. Grupe, KIT)
TbPc2 molecule quantum-bit device. Electrons (red) from the electrodes jump onto the molecule reading out the electronic spin (orange) and the nuclear spin (green)

(Graphics: C. Grupe, KIT)

Abstract:
Quantum computers promise to reach computation speeds far beyond that of today's computers. As they would use quantum effects, however, they would also be susceptible to external interferences. Information flow into and out of the system is a critical point. Researchers from KIT with partners from Grenoble and Strasbourg have now read out the quantum state of an atom directly by using electrodes. In the Nature journal, it is reported about the stable interface between classical and quantum world. (DOI: 10.1038/nature11341)

Nature: Electronic Read-out of Quantum Bits: Quantum State of a Single Atomic Nucleus Can Be Controlled and Determined by Simple Electrodes / Basis of Quantum Computers and Nano Spintronics

Karlsruhe, Germany | Posted on August 16th, 2012

"Normally, every contact with the outer world changes information in a quantum mechanical system in a completely uncontrolled manner," explains Professor Mario Ruben from Karlsruhe Institute of Technology. "We therefore have to keep the quantum state stable and shielded. On the other hand, information has to be read out in a controlled manner for further use."

Magnetic molecule complexes may be a solution of this dilemma. In their center, a metal atom with a pronounced magnetic moment, a spin, is located. It is surrounded by organic molecules that shield the atom. "When synthesizing this protective enclosure, we can exactly define how much the metal atom sees of the outer world," explains Ruben the trick of his research project.

The study presented is based on the metal atom terbium that was provided with an enclosure of about 100 carbon, nitrogen, and water atoms and then placed in the center of nanometer-sized, electric gold contacts. Due to the properties of the molecule, the electrodes had an effect similar to the three channels of a transistor. Electric voltage of the middle gate electrode influenced the current through the other two electrodes. In this way, the working point was set. Then, the molecule was exposed to various changing magnetic fields and the jump of the spin was reflected by the amplitude of the current curve. "By measuring current flow, we found that the nuclear spin of the metal atom is stable for up to 20 seconds," says Ruben. "For quantum mechanical processes, this is a very long time."

Ruben is sure that "the results will be of particular importance to spintronics and quantum computing." Spintronics uses the magnetic spin of single particles for information processing. The word describes the symbiosis of spin and electronics. Quantum computers use quantum mechanical effects, such as the entanglement and super-position of spins, for the parallel execution of algorithms at high speed.

The Publication:
"Electronic read-out of a single nuclear spin using a molecular spin-transistor", R. Vincent et. al., Nature, vol. 488, issue 7411, pp 357-360, doi: 10.1038/nature11341

####

About Karlsruhe Institute of Technology (KIT)
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-47414

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681

Copyright © Karlsruhe Institute of Technology (KIT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information to the topic please also read:"Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets" J. Schwöbel et. al. Nature Comms. 2, 2012, DOI: 10.1038/ncomms1953.

Related News Press

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Quantum Computing

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project