Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nature: Electronic Read-out of Quantum Bits: Quantum State of a Single Atomic Nucleus Can Be Controlled and Determined by Simple Electrodes / Basis of Quantum Computers and Nano Spintronics

TbPc2 molecule quantum-bit device. Electrons (red) from the electrodes jump onto the molecule reading out the electronic spin (orange) and the nuclear spin (green) (Graphics: C. Grupe, KIT)
TbPc2 molecule quantum-bit device. Electrons (red) from the electrodes jump onto the molecule reading out the electronic spin (orange) and the nuclear spin (green)

(Graphics: C. Grupe, KIT)

Abstract:
Quantum computers promise to reach computation speeds far beyond that of today's computers. As they would use quantum effects, however, they would also be susceptible to external interferences. Information flow into and out of the system is a critical point. Researchers from KIT with partners from Grenoble and Strasbourg have now read out the quantum state of an atom directly by using electrodes. In the Nature journal, it is reported about the stable interface between classical and quantum world. (DOI: 10.1038/nature11341)

Nature: Electronic Read-out of Quantum Bits: Quantum State of a Single Atomic Nucleus Can Be Controlled and Determined by Simple Electrodes / Basis of Quantum Computers and Nano Spintronics

Karlsruhe, Germany | Posted on August 16th, 2012

"Normally, every contact with the outer world changes information in a quantum mechanical system in a completely uncontrolled manner," explains Professor Mario Ruben from Karlsruhe Institute of Technology. "We therefore have to keep the quantum state stable and shielded. On the other hand, information has to be read out in a controlled manner for further use."

Magnetic molecule complexes may be a solution of this dilemma. In their center, a metal atom with a pronounced magnetic moment, a spin, is located. It is surrounded by organic molecules that shield the atom. "When synthesizing this protective enclosure, we can exactly define how much the metal atom sees of the outer world," explains Ruben the trick of his research project.

The study presented is based on the metal atom terbium that was provided with an enclosure of about 100 carbon, nitrogen, and water atoms and then placed in the center of nanometer-sized, electric gold contacts. Due to the properties of the molecule, the electrodes had an effect similar to the three channels of a transistor. Electric voltage of the middle gate electrode influenced the current through the other two electrodes. In this way, the working point was set. Then, the molecule was exposed to various changing magnetic fields and the jump of the spin was reflected by the amplitude of the current curve. "By measuring current flow, we found that the nuclear spin of the metal atom is stable for up to 20 seconds," says Ruben. "For quantum mechanical processes, this is a very long time."

Ruben is sure that "the results will be of particular importance to spintronics and quantum computing." Spintronics uses the magnetic spin of single particles for information processing. The word describes the symbiosis of spin and electronics. Quantum computers use quantum mechanical effects, such as the entanglement and super-position of spins, for the parallel execution of algorithms at high speed.

The Publication:
"Electronic read-out of a single nuclear spin using a molecular spin-transistor", R. Vincent et. al., Nature, vol. 488, issue 7411, pp 357-360, doi: 10.1038/nature11341

####

About Karlsruhe Institute of Technology (KIT)
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-47414

Margarete Lehné
Presse, Kommunikation und Marketing
Phone: +49 721 608-48121
Fax: +49 721 608-45681

Copyright © Karlsruhe Institute of Technology (KIT)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For further information to the topic please also read:"Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets" J. Schwöbel et. al. Nature Comms. 2, 2012, DOI: 10.1038/ncomms1953.

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum Computing

Developing reliable quantum computers February 22nd, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Quantum algorithm could help AI think faster: Researchers in Singapore, Switzerland and the UK present a quantum speed-up for machine learning February 2nd, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project