Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Making Graphene Industry-Ready: Fluorescence Quenching Metrology

A fluorescence quenching metrology segmented image of graphe fluorinated using a striped mask.
A fluorescence quenching metrology segmented image of graphe fluorinated using a striped mask.

Abstract:
Researchers at the University of California, Riverside led by Cengiz S. Ozkan have developed a large-scale graphene metrology technique that paves the way for widespread industrial applications, ranging from semiconductors to energy devices.

Making Graphene Industry-Ready: Fluorescence Quenching Metrology

Riverside, CA | Posted on August 16th, 2012

Graphene is a carbon allotrope that consists of one-atom-thick planar sheets of carbon atoms. Thanks to its extraordinary electrical, thermal, and optical properties, this miracle carbon material eventually earned its discoverers a Nobel prize in Physics. The greatest challenge in employing graphene industrially, in areas such as energy, semiconductor fabrication, and thermal management, has been making it relevant at larger scales. This requires increasing the size of graphene itself and developing large-scale industrial metrology techniques.

Now the Ozkan group at UCR has made a significant stride in making graphene industry-ready by developing an industrial metrology technique for large-area graphene sheets that relies on fluorescence quenching phenomena. This method is capable of "seeing" chemically functionalized graphene regions and accurately identifying the number of layers in entire large-scale graphene sheets. For utilizing graphene in electronics, an industry-reliable metrology of doped pristine regions, and defect detection are amongst the fundamental needs.

The UCR scientists demonstrate the capability of their method by visualizing complex micron-scale patterns of graphene regions that are chemically modified by fluorine atoms. They went on to test their findings by analyzing the photophysical properties of functionalized and pristine graphene. "Our research demonstrates that fluorescence quenching metrology will provide a widely applicable and scalable characterization technique to visually map complex patterns of chemically altered regions on graphene sheets", said graduate student Maziar Ghazinejad.

Due to its simplicity, small footprint, and high speed, fluorescence quenching metrology is now poised to address the chronic need for an industrial graphene metrology capable of visualizing the features that are being manufactured.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Graphene/ Graphite

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Chip Technology

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project