Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Production of Nanosensors with Effective Elimination Ability to Measure Aromatic Pollutants

Abstract:
Iranian researchers from the University of Mohaqqeq Ardebili and the University of Bath in Britain obtained the technology to produce a nanosensor in order to measure environmental pollutants that are called dihydroxybenzene.

Production of Nanosensors with Effective Elimination Ability to Measure Aromatic Pollutants

Tehran, Iran | Posted on August 14th, 2012

In addition to having reasonable price, the proposed electrode in the research is able to adsorb huge amounts of dihydroxybenzene impurities. Such pollutants are widely used in cosmetics, pesticides, odor and flavor essences, drugs, antioxidants, and chemical compounds in photography and paints

The scientists made the progress by carrying out voltammetric studies on dihydroxybenzene on the surface of a glass carbon electrode modified with composite film of carbon-chitosan nanoparticles with high area.

"Carbonic materials are important in electro-analysis. Various types of carbonic materials such as sheet graphite, glass carbon, carbon nanotubes, boron-doped diamond, and carbon nanoparticles improve the properties of electrodes in a wide range of applications. Therefore, we firstly produced and characterized carbon nanotube/chitosan nanocomposite. Then, we studied the electrochemical properties of the obtained electrode in the presence of dihydroxybenzene after the preparation of the electrode by casting on the surface of the electrode. Next, we developed the research and measured very low concentrations of the mentioned compounds by using adsorption studies," Dr. Mandana Amiri, member of the Scientific Board of University of Mohaqqeq Ardebili, said about the research.

In this research, the real samples of water like a local river water and wastewater from a rubber factory were tested by the electrode, and the results were analyzed. The results showed a range of 96-108% recycling in various concentrations.

The results of the research have been published on 20 February 2012 in Sensors and Actuators B: Chemical, vol. 162, issue 1, pp. 194-200.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Sensors

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Rice nanophotonics experts create powerful molecular sensor: Sensor amplifies optical signature of single molecules about 100 billion times July 15th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Environment

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE