Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Cleaning up oil spills with graphene sponges

Absorption of dodecane marked with red dye from artificial seawater using the graphene sponge. The absorption process was complete in 80 seconds.
Absorption of dodecane marked with red dye from artificial seawater using the graphene sponge. The absorption process was complete in 80 seconds.

Abstract:
Since the discovery and isolation of graphene, physical scientists have been fascinated by the unique physics displayed by the truly two dimensional material, and materials scientists have been scrambling to harness these unique properties to develop its use in one or more "killer applications". Graphene has been proposed for a multitude of high-tech applications, including transparent conductors, fillers for polymeric composites, and electronic heat sinks, to take advantage of its exceptional electrical, mechanical, and thermal properties (for example). However, according to recent results by Professor Rodney Ruoff and co-workers, another more crude application may beat them all to the marketplace: oil spill cleanup.

Cleaning up oil spills with graphene sponges

Germany | Posted on August 10th, 2012

Many different types of materials have been proposed or tested for use in cleaning up oil spills, including zeolites, polymers, activated carbon, and even sawdust. Selective absorption capacity of the oil layer is of paramount importance in such an application, and the toxicity of the absorbent itself is also an important consideration.

In Ruoff's work, a sponge-like graphene structure was fabricated by reducing graphene oxide and then applying a hydrothermal molding procedure in order to achieve a morphology with a high surface area. The researchers then tested the absorbance properties of this material for removing various commercial petroleum products (including kerosene, pump oil, fats, and organic solvents) from artificial seawater.

The remarkable results showed that the graphene sponge absorbed up to 86 times its weight, which was higher than all other common absorbents. The absorbed hydrocarbons were then subsequently recovered from the sponge with a 99% yield using simple heating. Using this procedure, the graphene sponge could then be regenerated and reused up to 10 times without a drop in performance. These exciting results could mean new hope in the unfortunate case of an environmental oil spill, but this type of technology could also be applied in more routine wastewater treatment applications or with industrial separations. The high-tech applications of graphene will come, but, with continued development in this direction, graphene's first "killer application" may not be high-tech at all.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Graphene/ Graphite

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Fluid-inspired material self-heals before your eyes: Coating for metals rapidly heals over scratches and scrapes to prevent corrosion January 30th, 2019

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Environment

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project