Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Cleaning up oil spills with graphene sponges

Absorption of dodecane marked with red dye from artificial seawater using the graphene sponge. The absorption process was complete in 80 seconds.
Absorption of dodecane marked with red dye from artificial seawater using the graphene sponge. The absorption process was complete in 80 seconds.

Abstract:
Since the discovery and isolation of graphene, physical scientists have been fascinated by the unique physics displayed by the truly two dimensional material, and materials scientists have been scrambling to harness these unique properties to develop its use in one or more "killer applications". Graphene has been proposed for a multitude of high-tech applications, including transparent conductors, fillers for polymeric composites, and electronic heat sinks, to take advantage of its exceptional electrical, mechanical, and thermal properties (for example). However, according to recent results by Professor Rodney Ruoff and co-workers, another more crude application may beat them all to the marketplace: oil spill cleanup.

Cleaning up oil spills with graphene sponges

Germany | Posted on August 10th, 2012

Many different types of materials have been proposed or tested for use in cleaning up oil spills, including zeolites, polymers, activated carbon, and even sawdust. Selective absorption capacity of the oil layer is of paramount importance in such an application, and the toxicity of the absorbent itself is also an important consideration.

In Ruoff's work, a sponge-like graphene structure was fabricated by reducing graphene oxide and then applying a hydrothermal molding procedure in order to achieve a morphology with a high surface area. The researchers then tested the absorbance properties of this material for removing various commercial petroleum products (including kerosene, pump oil, fats, and organic solvents) from artificial seawater.

The remarkable results showed that the graphene sponge absorbed up to 86 times its weight, which was higher than all other common absorbents. The absorbed hydrocarbons were then subsequently recovered from the sponge with a 99% yield using simple heating. Using this procedure, the graphene sponge could then be regenerated and reused up to 10 times without a drop in performance. These exciting results could mean new hope in the unfortunate case of an environmental oil spill, but this type of technology could also be applied in more routine wastewater treatment applications or with industrial separations. The high-tech applications of graphene will come, but, with continued development in this direction, graphene's first "killer application" may not be high-tech at all.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library

Related News Press

Graphene/ Graphite

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

News and information

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Discoveries

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Ultrasensitive sensor using N-doped graphene July 26th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic