Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Could silicene be the future of electronics?

STM image of the various surface domains of silicene
STM image of the various surface domains of silicene

The current standard in computer architecture is based upon silicon technology, which is what allows you to read this webpage, for instance, and its revolutionary influence during the digital age now leaves almost no corner of modern life untouched. In order to meet our increasing demands for more memory and for higher speed, the dimensions of the silicon-based devices which make up our computers continue to get smaller. As we begin to reach the limits of the current form of this technology, the question is what is next? According to recent work by Alessandro Molle and co-workers, the next generation of computing could be performed with silicene, an atomically thin form of silicon which has the potential to revolutionize nanoelectronics.

Could silicene be the future of electronics?

Germany | Posted on August 2nd, 2012

The silicene structure consists of one atomic layer of silicon atoms and in this way it is analogous to graphene, the atomically thin sheet of carbon atoms which has been the subject of high research interest in recent years. For all of graphene's promise, one of its limitations is the lack of a naturally occurring band gap in its electronic states. This band gap is of fundamental importance for creating the electronic switches and logic circuits which make up digital electronic devices. There has been some recent progress in inducing a band gap into graphene, but it involves complicated methods such as bringing the graphene sheets into contact with a strongly-interacting substrate, which can sufficiently perturb the electronic properties. Alternatively, silicene exhibits a band gap even without modification and, it has the advantage of inherent compatibility with the silicon technology infrastructure already used in manufacturing much of today's digital electronics.

In Molle's studies, his team grew thin layers of silicene on silver substrates using molecular beam epitaxy. Using scanning tunneling microscopy, various domains of silicene were observed, showing drastically different surface symmetries as illustrated in the accompanying image above. Using tunneling spectroscopy, the researchers were able to show that the buckled structures, where the strict 2-dimensional symmetry was broken, exhibited qualitatively different electronic properties than the non-buckled phases. Understanding the details of these structure-property relationships is very important for controlling the electrical properties of the silicene thin films, and with further study, the emergence of the different silicene structures could be controlled by tailoring the growth conditions. Once these issues have been overcome, the next generation of computers may still be made of silicon after all - only thinner.


For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Thin films

Plasma Focus Device Applied to Produce Zinc Oxide Nanofilms November 18th, 2015

Nanotech Signs MOU with Leading European Manufacturer to Supply Optical Thin Film to the Banknote Market: Alliance Combines Technology and Production Capacity to Address High Volume Opportunities November 17th, 2015

Electrochemical etching down to one-monolayer towards high-Tc superconductivity: A new route for exploration of nontrivial physical phenomena at two-dimensional materials November 4th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic