Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Boosting European competitiveness in photovoltaics: Empa joins consortium to develop solar cells

Photovoltaics at Empa
Photovoltaics at Empa

Abstract:
With 13 partners from all over Europe, Empa, the Swiss Federal Laboratories for Materials Science and Technology, has launched an EU-funded project to develop affordable, more efficient solar cells. With an overall budget of 10 million Euro, the SCALENANO project aims at achieving breakthroughs in the cost-efficiency of photovoltaic devices and modules based on advanced thin film technologies.

Boosting European competitiveness in photovoltaics: Empa joins consortium to develop solar cells

Duebendorf, Switzerland | Posted on July 14th, 2012

Thin film solar cell technologies have a potential to offer a higher material utilization and lower module costs compared to classical wafer-based silicon solar cells because they employ light-absorbing materials that are about 100-times thinner than silicon wafers. Devices based on the substance class of chalcogenides, such as copper indium gallium (di)selenide (also known as CIGS), exhibit the highest efficiencies of all thin film photovoltaic technologies and have already entered the stage of mass production. However, current production methods typically rely on vacuum-based deposition processes that are difficult to control over large surfaces and require expensive equipment. This counteracts the potential reduction of material costs that are inherent to thin film technologies.

To take up this challenge, the EU-funded international project SCALENANO ("Development and scale-up of nanostructure-based materials and processes for low-cost, high-efficiency chalcogenide-based photovoltaics") - which runs until mid-2015 - will develop alternative, vacuum-free processes based on the electro-deposition of nanostructured precursors. The project also includes the exploration and development of alternative processes with high-throughput and process rates, as well as their extension to the next generation of Cu2ZnSn(S,Se)2-based absorbers (so-called kesterites) that only use cheap and abundant elements. Altogether, this should be a strong boost for European competitiveness in photovoltaic technologies.

Empa's laboratory for Thin Films and Photovoltaics, led by Ayodhya Tiwari, will contribute to the project by investigating solution- and nanoparticle-based deposition of kesterite absorbers, front electrical contacts of transparent conducting oxides (TCOs) and supplying reference solar cells prepared by vacuum-based techniques. Project leader Yaroslav Romanyuk anticipates that "SCALENANO findings may find applications not only in photovoltaics but also in other fields such as smart windows and batteries."

####

About Empa
Empa as a Swiss Materials Science and Technology Institution within the ETH domain is part of the Swiss Science-Technology-Education community. It specializes in applied research and development as well as sophisticated services in the field of sustainable materials science and technology. Its core activities are innovative collaboration with industry and public institutions to ensure the safety of humankind and the environment, knowledge propagation and university-level teaching. The Empa Academy disseminates the latest results of our work at events and in publications. The focal points of our activities are: modern materials, their surfaces and interfaces, construction materials and systems, materials and systems that protect the human body and ensure its wellbeing, information, simulation and reliability technology, and mobility, energy and the environment. Approximately 820 employees work in over 30 specialist fields in nationally and internationally funded research programs, partnership-based development projects and interdisciplinary customer-specific service assignments.

For more information, please click here

Contacts:
Sabine Charlotte Voser Moebus
+41 44 823 45 99

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Amazingly 'green' synthesis method for high-tech dyes: Dyes that are also of great interest for organic electronics have recently been prepared and crystallised at TU Wien. All that is required is just water, albeit under highly unusual conditions. August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Thin films

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Announcements

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Energy

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Solar/Photovoltaic

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project