Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ferroelectricity on the Nanoscale: Berkeley Lab Researchers Say First Atomic-Scale Look at Ferroelectric Nanocrystals Points to Terabytes/Inch Storage

Atomic-resolution images of germanium telluride nanoparticles from Berkeley Lab’s TEAM I electron microscope.
Atomic-resolution images of germanium telluride nanoparticles from Berkeley Lab’s TEAM I electron microscope.

Abstract:
Promising news for those who relish the prospects of a one-inch chip storing multiple terabytes of data, some clarity has been brought to the here-to-fore confusing physics of ferroelectric nanomaterials. A multi-institutional team of researchers, led by scientists at the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has provided the first atomic-scale insights into the ferroelectric properties of nanocrystals. This information will be critical for development of the next generation of nonvolatile data storage devices.

Ferroelectricity on the Nanoscale: Berkeley Lab Researchers Say First Atomic-Scale Look at Ferroelectric Nanocrystals Points to Terabytes/Inch Storage

Berkeley, CA | Posted on July 10th, 2012

Working with the world's most powerful transmission electron microscope, the researchers mapped the ferroelectric structural distortions in nanocrystals of germanium telluride, a semiconductor, and barium titanate, an insulator. This data was then combined with data from electron holographic polarization imaging to yield detailed information on the polarization structures and scaling limits of ferroelectric order on the nanoscale.

"As we scale down our device technology from the microscale to the nanoscale, we need a better understanding of how critical material properties, such as ferroelectric behavior, are impacted," says Paul Alivisatos, director of Berkeley Lab and one of the principal investigators in this research. "Our results provide a pathway to unraveling the fundamental physics of nanoscale ferroelectricity at the smallest possible size scales."

Alivisatos, who is also the Larry and Diane Bock Professor of Nanotechnology at the University of California (UC) Berkeley, is a corresponding author of a paper describing this work in the journal Nature Materials titled "Ferroelectric order in individual nanometrescale Crystals." The other corresponding author is Ramamoorthy Ramesh, a senior scientist with Berkeley Lab's Materials Sciences Division and the Plato Malozemoff Professor of Materials Science and Physics for UC Berkeley.

Ferroelectricity is the property by which materials can be electrically polarized, meaning they will be oriented in favor of either a positive or negative electrical charge. This polarization can be flipped with the application of an external electrical field, a property that could be exploited for nonvolatile data storage, similar to the use of ferromagnetic materials today but using much smaller, far more densely packed devices.

"Although much progress has been made towards understanding nanoscale photophysical magnetic and other functional properties, understanding the basic physics of ferroelectric nanomaterials remains far less advanced," says co-principal investigator Ramesh, who attributes contradicting reports on nanoscale ferroelectricity in part to the lack of high-quality, nanocrystals of ferroelectric materials that feature well-defined sizes, shapes and surfaces.

"Another problem has been the reliance on ensemble measurements rather than single particle techniques," he says. "Statistical-average measurement techniques tend to obscure the physical mechanisms responsible for profound changes in ferroelectric behavior within individual nanocrystals."

The Berkeley Lab-led research team was able to map ferroelectric structural distortions within individual nanocrystals thanks to the unprecedented capabilities of TEAM I, which is housed at Berkeley Lab's National Center for Electron Microscopy (NCEM). TEAM stands for "Transmission Electron Aberration-corrected Microscope." TEAM I can resolve images of structures with dimensions as small as one half‑angstrom - less than the diameter of a single hydrogen atom.

The maps produced at TEAM I of ferroelectric distortion patterns within the highly conducting germanium telluride nanocrystals were then compared with electron holography studies of insulating nanocubes of barium titanate, which were carried out by collaborators at Brookhaven National Laboratory (BNL).

"Electron holography is an interferometry technique using coherent electron waves," said BNL physicist and co-author of the Nature Materials paper Myung-Geun Han. "Firing focused electron waves through the ferroelectric sample creates what's called a phase-shift, or an interference pattern that reveals details of the targeted structure. This produces an electron hologram, which we can use to directly see local electric fields of individual ferroelectric nanoparticles."

These combined studies enabled the independent examination of depolarizing field and surface structure influences and thereby enabled the research team to identify the fundamental factors governing the nature of the ferroelectric polarized state at finite dimensions. The results indicate that a monodomain ferroelectric state with linearly ordered polarization remains stable in these nanocrystals down to dimensions of less than 10 nanometers. Also, room-temperature polarization flipping was demonstrated down to dimensions of about five nanometers. Below this threshold, ferroelectric behavior disappeared. This indicates that five nanometers is likely a size limit for data storage applications, the authors state.

"We also showed that ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions," Ramesh says. "Taken together, our results provide a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits."

Also co-authoring the Nature Materials paper in addition to Alivisatos, Ramesh and Han were Mark Polking, Amin Yourdkhani, Valeri Petkov, Christian Kisielowski, Vyacheslav Volkov, Yimei Zhu and Gabriel Caruntu.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, or follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information on the research of Ramamoorthy Ramesh, visit his Website at:

For more information on the research of Paul Alivisatos visit his Website at:

For more about the National Center for Electron Microscopy and TEAM I visit the Website at:

Related News Press

Laboratories

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

News and information

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Memory Technology

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Announcements

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project