Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sensor technology helps standardize food industry

Rungroj Maolanon (seated) giving a talk on NanoNose technology to private sector groups.
Rungroj Maolanon (seated) giving a talk on NanoNose technology to private sector groups.

Abstract:
Researchers at NANOTEC, King Mongkut's Institute of Technology Ladkrabang (KMITL)(College of Nanotechnology), and Mahidol University have collaborated to develop an electronic nose (NanoNose) to help local food industry in areas related to standardizing smell, which is one of the key sensory perceptions for the food industry.

Sensor technology helps standardize food industry

Pathumthani, Thailand | Posted on July 10th, 2012

The Thai food industry is a multi billion dollar industry and account for 3% of the total world food export. The drawback of this industry is that it is prone to various sensitive aspects such as safety and quality. "We utilized knowledge in areas related to surface analysis and nanaocoating to existing sensor technology to developed an electronic nose (NanoNose) which is a bio-mimetic device based on series of gas sensors to provide a quasi-quantitative measure of the signature of smell" said Rungroj Maolanon, a researcher at Nanomolecular Sensor Lab at NANOTEC and team member. "In a way similar to human nose, NanoNose allow analysis of the headspace (volatile compounds) generated by liquid, gaseous or solid samples".



NanoNose provides a qualitative measure of smell and identifies samples through a learning process. It compares each fingerprint to known chemical substance patterns in a data library and either matches the fingerprint, or records the sample as a new pattern. The data analysis employed the Principal Component Analysis (PCA), which classify the data according the recognition pattern of sensor array. The electrical response of each sensor is generated by the replacement of absorbed oxygen molecules by exposed chemical vapors to induce free charge on metal oxide sensor surface.

From this research collaboration, different variation of NanoNose applications can be applied to agriculture, food science, health and environmental monitoring. The capability of the device to distinguish different types of smell has been demonstrated on fine scents such as perfume, alcoholic beverages, and coffee aroma. In the medical industry, breath analyses using NanoNose can be use to detect infections, gastrointestinal disorders and liver disease.

####

For more information, please click here

Contacts:
Ramjitti Indaraprasirt
Manager
Public Relations Section
NANOTEC
02-564-7100 ext: 6617

Copyright © NANOTEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Discoveries

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Food/Agriculture/Supplements

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Research partnerships

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project