Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New fuel cell keeps going after the hydrogen runs out: Materials scientists demonstrate first SOFC capable of battery-like storage

Three possible mechanisms (left to right) can explain the operation of the vanadium oxide / platinum fuel cell after its fuel has been spent. The illustration represents a simplified cross-section of the SOFC: the top layer is the cathode (made of porous platinum), the middle layer is the electrolyte (yttria-stabilized zirconia, YSZ), and the bottom layer is the VOx anode. During normal operation, the hydrogen fuel would be at the bottom of this diagram. (Image courtesy of Quentin Van Overmeere.)
Three possible mechanisms (left to right) can explain the operation of the vanadium oxide / platinum fuel cell after its fuel has been spent. The illustration represents a simplified cross-section of the SOFC: the top layer is the cathode (made of porous platinum), the middle layer is the electrolyte (yttria-stabilized zirconia, YSZ), and the bottom layer is the VOx anode. During normal operation, the hydrogen fuel would be at the bottom of this diagram.

(Image courtesy of Quentin Van Overmeere.)

Abstract:
Imagine a kerosene lamp that continued to shine after the fuel was spent, or an electric stove that could remain hot during a power outage.

Materials scientists at Harvard have demonstrated an equivalent feat in clean energy generation with a solid-oxide fuel cell (SOFC) that converts hydrogen into electricity but can also store electrochemical energy like a battery. This fuel cell can continue to produce power for a short time after its fuel has run out.

New fuel cell keeps going after the hydrogen runs out: Materials scientists demonstrate first SOFC capable of battery-like storage

Cambridge, MA | Posted on June 30th, 2012

"This thin-film SOFC takes advantage of recent advances in low-temperature operation to incorporate a new and more versatile material," explains principal investigator Shriram Ramanathan, Associate Professor of Materials Science at the Harvard School of Engineering and Applied Sciences (SEAS). "Vanadium oxide (VOx) at the anode behaves as a multifunctional material, allowing the fuel cell to both generate and store energy."

The finding, which appears online in the journal Nano Letters, will be most important for small-scale, portable energy applications, where a very compact and lightweight power supply is essential and the fuel supply may be interrupted.

"Unmanned aerial vehicles, for instance, would really benefit from this," says lead author Quentin Van Overmeere, a postdoctoral fellow at SEAS. "When it's impossible to refuel in the field, an extra boost of stored energy could extend the device's lifespan significantly."

Ramanathan, Van Overmeere, and their coauthor Kian Kerman (a graduate student at SEAS) typically work on thin-film SOFCs that use platinum for the electrodes (the two "poles" known as the anode and the cathode). But when a platinum-anode SOFC runs out of fuel, it can continue to generate power for only about 15 seconds before the electrochemical reaction peters out.

The new SOFC uses a bilayer of platinum and VOx for the anode, which allows the cell to continue operating without fuel for up to 14 times as long (3 minutes, 30 seconds, at a current density of 0.2 mA/cm2). This early result is only a "proof of concept," according to Ramanathan, and his team predicts that future improvements to the composition of the VOx-platinum anode will further extend the cell's lifespan.

During normal operation, the amount of power produced by the new device is comparable to that produced by a platinum-anode SOFC. Meanwhile, the special nanostructured VOx layer sets up various chemical reactions that continue after the hydrogen fuel has run out.

"There are three reactions that potentially take place within the cell due to this vanadium oxide anode," says Ramanathan. "The first is the oxidation of vanadium ions, which we verified through XPS (X-ray photoelectron spectroscopy). The second is the storage of hydrogen within the VOx crystal lattice, which is gradually released and oxidized at the anode. And the third phenomenon we might see is that the concentration of oxygen ions differs from the anode to the cathode, so we may also have oxygen anions being oxidized, as in a concentration cell."

All three of those reactions are capable of feeding electrons into a circuit, but it is currently unclear exactly what allows the new fuel cell to keep running. Ramanathan's team has so far determined experimentally and quantitatively that at least two of three possible mechanisms are simultaneously at work.

Ramanathan and his colleagues estimate that a more advanced fuel cell of this type, capable of producing power without fuel for a longer period of time, will be available for applications testing (e.g., in micro-air vehicles) within 2 years.

This work was supported by the U.S. National Science Foundation (NSF), a postdoctoral scholarship from Le Fonds de la Recherche Scientifique-FNRS, and the U.S. Department of Defense's National Defense Science and Engineering Graduate Fellowship Program. The researchers also benefited from the resources of the Harvard University Center for Nanoscale Systems (a member of the NSF-funded National Nanotechnology Infrastructure Network) and the NSF-funded MRSEC Shared Experimental Facilities at MIT.

####

Contacts:
Caroline Perry
(617) 496-1351

Copyright © Harvard's School of Engineering and Applied Sciences (SEAS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Thin films

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Discoveries

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Fuel Cells

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Proton pinball on the catalyst: Moisture helps catalyst in fuel cells August 3rd, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic