Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists measure soot particles in flight

This is the diffraction pattern of a mixed salt/soot aerosol particle.

Credit: Duane Loh et al.
This is the diffraction pattern of a mixed salt/soot aerosol particle.

Credit: Duane Loh et al.

Abstract:
"For the first time we can actually see the structure of individual aerosol particles floating in air, their 'native habitat'," said DESY scientist Henry Chapman from the Center for Free-Electron Laser Science (CFEL) in Hamburg. "This will have important implications for various fields from climate modelling to human health." CFEL is a joint venture of Deutsches Elektronen-Synchrotron DESY, the German Max Planck Society and the University of Hamburg.

Scientists measure soot particles in flight

Germany | Posted on June 27th, 2012

Aerosol particles like soot play important roles in a wide range of fields from toxicology to climate science. Despite their importance, their properties are surprisingly difficult to measure: Visible light doesn't provide the necessary resolution, X-ray sources are usually not bright enough to image single particles, and for electron microscopy particles have to be collected onto a substrate, which potentially alters their structure and encourages agglomeration.

Using the world's most powerful X-ray laser LCLS at the U.S. SLAC National Accelerator Laboratory in Stanford (California), the team captured images of single soot particles floating through the laser beam. "We now have a richer imaging tool to explore the connections between their toxicity and internal structure," said SLAC's Duane Loh, lead author of the study appearing in this week's scientific journal Nature. Free-electron lasers like LCLS or the European XFEL currently being built in Hamburg consist of particle accelerators that send unbound (free) electrons on a tight slalom course where they emit X-ray light.

The study focused on particles less than 2.5 micrometres in diameter. This is the size range of particles that efficiently transport into the human lungs and constitute the second most important contribution to global warming. Microscopic soot particles were generated with electric sparks from a graphite block and fed with a carrier gas of argon and nitrogen into a device called an aerodynamic lens, that produces a thin beam of air with entrained soot particles. This aerosol beam intercepted the pulsed laser beam. Whenever an X-ray laser pulse hit a soot particle, it produced a characteristic diffraction pattern that was recorded by a detector. From this pattern, the scientists were able to reconstruct the soot particle's structure.

"The structure of soot determines how it scatters light, which is an important part of understanding how the energy of the sun is absorbed by the earth's atmosphere. This is a key factor in models of the earth's climate," explained co-author Andrew Martin from DESY. "There also are many links between airborne particles around two micrometres in size and adverse health effects. Using the free-electron laser we are now able to measure the shape and composition of individual airborne particles. This may lead to a better understanding of how these particles interfere with the function of cells in the lungs."

The team recorded patterns from 174 individual soot particles and measured their compactness, using a property called fractal dimension. "We've seen that the fractal dimension is higher than what was thought," said Chapman. "This means that soot in the air is compact, which has implications for the modelling of climate effects." Also, the structure of the airborne soot seems to be surprisingly variable. "There is quite some variation in the fractal dimension, which implies that a lot of rearrangement is going on in the air," explains Chapman.

A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment, explained Michael Bogan from SLAC, who led the research. "Scientists can now imagine being able to watch the evolution of soot formation in combustion engines from their molecular building blocks, or maybe even view the first steps of ice crystal formation in clouds."

In real-world settings soot is seldom pure. To see the effects of mixing with other aerosols, the researchers added salt spray to the soot particles, resulting in larger particles with soot attached to the tiny salt crystals. Such composite particles might form in coastal cities and are expected to have a much larger climate effect than soot alone. Composite aerosols are more difficult to analyse, but the new technique could clearly discern between soot, salt and mixtures of both. As the aerosol particles are vaporized by the intense X-ray laser pulse, the researchers could use mass spectroscopy to examine the composition of each individual particle imaged.

Even though the aerosol particles are destroyed by the X-ray laser pulse, the pulse is so short that it out-runs this destruction. Therefore the diffraction patterns are of high quality and represent the undamaged object. The novel X-ray technique can find wide application to study all sorts of aerosols and can also be extended to resolve the static and dynamic morphology of general ensembles of disordered particles, the researchers state.

"We are now able to study the structure of soot by measuring individual particles in a large ensemble," explains Martin. "Biological samples, like cells and large proteins, have a similar size to the soot particles we studied and also lack a fixed, reproducible structure. In the future it may be possible to extend these techniques beyond aerosols, to study the structural variations in biological systems."

The research team included contributors from SLAC, DESY, Lawrence Berkeley National Laboratory, the Max Planck Institutes, the National Energy Research Scientific Computing Center, Lawrence Livermore National Laboratory, Cornell University, the University of Hamburg, Synchrotron Trieste and Uppsala University. LCLS is supported by DOE's Office of Science.

####

For more information, please click here

Contacts:
Dr. Thomas Zoufal

49-408-998-1666

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Imaging

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

News and information

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Discoveries

Like a hall of mirrors, nanostructures trap photons inside ultrathin solar cells April 22nd, 2014

Nanomaterial Outsmarts Ions April 22nd, 2014

Vacuum Ultraviolet Lamp of the Future Created in Japan: First Solid-State Vacuum UV Phosphor, Described in APL-Materials, Promises Smaller, Safer, Longer Lasting, Low Power Lamps for Industrial Applications April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Announcements

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

PETA science consortium to present hazard testing strategy at nanotoxicology meeting: High tech field ripe for use of sophisticated non-animal testing strategies April 22nd, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tools

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumericalís EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE