Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers Find Gold Nanoparticles Capable of ‘Unzipping’ DNA

As the nanoparticles cluster together, they pull the strands of DNA apart.
As the nanoparticles cluster together, they pull the strands of DNA apart.

Abstract:
"Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation"

Authors: Justin G. Railsback, Abhishek Singh, Ryan C. Pearce, Ramon Collazo, Zlatko Sitar, Yaroslava G. Yingling and Anatoli V. Melechko, North Carolina State University; Timothy E. McKnight, Oak Ridge National Laboratory

Published: online June 19, 2012 in Advanced Materials

Abstract: The understanding of interactions between double stranded DNA and charged nanoparticles will have a broad bearing on many important applications from drug delivery to DNA-templated metallization. Cationic nanoparticles can bind to DNA, a negatively charged molecule, through a combination of electrostatic attraction, groove binding, and intercalation. Such binding events induce changes in the conformation of a DNA strand. In nature DNA wraps around a cylindrical protein assembly (diameter and height of 6 nm ) with a ~220 positive charge , creating the complex known as chromatin. The charge of a nanoparticle plays a crucial role in its ability to induce DNA structural changes. If a nanoparticle has a highly positive surface charge density, the DNA is likely to wrap and bend upon binding to the nanoparticle (as in the case of chromatin). On the other hand, if a nanoparticle is weakly charged it will not induce dsDNA compaction. Consequently, there is a transition zone from extended to compact DNA conformations which depends on chemical nature of the nanoparticle and occurs for polycations with charges between 5 and 10. While the interactions between highly charged NP and DNA have been extensively studied, the processes occurring within the transition zone are less explored. In this paper, we investigate DNA interactions with weakly charged, ligand functionalized gold nanoparticles (AuNP) and show how binding events with these particles affect the structure of dsDNA. Our chosen AuNP has a 1.4 nm diameter gold core and thiolated alkane ligands bearing primary amines for a total charge of +6 per nanoparticle. The +6 charge permits exploration of DNA-NP molecular interactions in the transition zone. In silico observations showed a reversible and groove specific interaction of AuNPs with DNA and demonstrated that even weakly charged NPs could compromise structural integrity of dsDNA. Electrophoretic mobility indicated the existence of a nanoparticle-modified DNA structure either due to separation into single strands or compaction of DNA. Spectral analysis revealed that the structure of dsDNA with AuNPs is not completely denatured as it has a combination of double and single stranded regions. MD simulations showed that lone AuNPs cannot denature even a dsDNA oligomer, whereas high concentrations of AuNPs can bend and separate DNA strands. Specifically, hydrophobic agglomeration of NPs leads to intercalation of alkane moieties between DNA strands, disrupting Watson-Crick base pairing while charged groups hold and bend the DNA strands. By tuning and balancing charge and hydrophobicity one can envision nanoparticles engineered to evoke a specific structural response from DNA.

Researchers Find Gold Nanoparticles Capable of ‘Unzipping’ DNA

Raleigh, NC | Posted on June 20th, 2012

New research from North Carolina State University finds that gold nanoparticles with a slight positive charge work collectively to unravel DNA's double helix. This finding has ramifications for gene therapy research and the emerging field of DNA-based electronics.

"We began this work with the goal of improving methods of packaging genetic material for use in gene therapy," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper describing the research. Gene therapy is an approach for addressing certain medical conditions by modifying the DNA in relevant cells.

The research team introduced gold nanoparticles, approximately 1.5 nanometers in diameter, into a solution containing double-stranded DNA. The nanoparticles were coated with organic molecules called ligands. Some of the ligands held a positive charge, while others were hydrophobic - meaning they were repelled by water.

Because the gold nanoparticles had a slight positive charge from the ligands, and DNA is always negatively charged, the DNA and nanoparticles were pulled together into complex packages.

"However, we found that the DNA was actually being unzipped by the gold nanoparticles," Melechko says. The positively-charged ligands on the nanoparticles attached to the DNA as predicted, but the hydrophobic ligands of the nanoparticles became tangled with each other. As this tangling pulled the nanoparticles into clusters, the nanoparticles pulled the DNA apart. Video of how the process works is available here.

"We think gold nanoparticles still hold promise for gene therapy," says Dr. Yaroslava Yingling, an assistant professor of materials science and engineering at NC State and co-author of the paper. "But it's clear that we need to tailor the ligands, charge and chemistry of these materials to ensure the DNA's structural integrity is not compromised."

The finding is also relevant to research on DNA-based electronics, which hopes to use DNA as a template for creating nanoelectronic circuits. Because some work in that field involves placing metal nanoparticles on DNA, this finding indicates that researchers will have to pay close attention to the characteristics of those nanoparticles - or risk undermining the structural integrity of the DNA.

The paper, "Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation," was published online June 19 in Advanced Materials. Lead author on the paper is Justin Railsback, a master's student at NC State. Co-authors include Abhishek Singh and Ryan Pearce, Ph.D. students at NC State; Dr. Ramon Collazo, assistant professor at NC State; Timothy McKnight, of Oak Ridge National Laboratory; and Dr. Zlatko Sitar, Kobe Steel Distinguished Professor of Materials Science and Engineering at NC State. The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386


Dr. Anatoli Melechko
919.515.8636


Dr. Yaroslava Yingling
919.513.2624

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Laboratories

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

Energy Department Awards New Contract to Manage and Operate Brookhaven National Laboratory November 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Nanomedicine

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

Research partnerships

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE