Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum bar magnets in a transparent salt

This image shows the antiferromagnetic arrangement of the spins (colored arrows) in the magnetic salt used by the Swiss-German-US-London team.

Credit: University College London
This image shows the antiferromagnetic arrangement of the spins (colored arrows) in the magnetic salt used by the Swiss-German-US-London team.

Credit: University College London

Abstract:
Scientists have managed to switch on and off the magnetism of a new material using quantum mechanics, making the material a test bed for future quantum devices.

Quantum bar magnets in a transparent salt

London, UK | Posted on June 17th, 2012

The international team of researchers led from the Laboratory for Quantum Magnetism (LQM) in Switzerland and the London Centre for Nanotechnology (LCN), found that the material, a transparent salt, did not suffer from the usual complications of other real magnets, and exploited the fact that its quantum spins - which are like tiny atomic magnets - interact according to the rules of large bar magnets. The study is published in Science.

Anybody who has played with toy bar magnets at school will remember that opposite poles attract, lining up parallel to each other when they are placed end to end, and anti-parallel when placed adjacent to each other. As conventional bar magnets are simply too large to reveal any quantum mechanical nature, and most materials are too complex for the spins to interact like true bar magnets, the transparent salt is the perfect material to see what's going on at the quantum level for a dense collection of tiny bar magnets.

The team were able to image all the spins in the special salt, finding that the spins are parallel within pairs of layers, while for adjacent layer pairs, they are antiparallel, as large bar magnets placed adjacent to each other would be. The spin arrangement is called "antiferromagnetic". In contrast, for ferromagnets such as iron, all spins are parallel.

By warming the material to only 0.4 degrees Celsius above the absolute "zero" of temperature where all classical (non-quantum) motion ceases, the team found that the spins lose their order and point in random directions, as iron does when it loses its ferromagnetism when heated to 870 Celsius, much higher than room temperature because of the strong and complex interactions between electron spins in this very common solid.

The team also found that they could achieve the same loss of order by turning on quantum mechanics with an electromagnet containing the salt. Thus, physicists now have a new toy, a collection of tiny bar magnets, which naturally assume an antiferromagnetic configuration and for which they can dial in quantum mechanics at will.

"Understanding and manipulating magnetic properties of more traditional materials such as iron have of course long been key to many familiar technologies, from electric motors to hard drives in digital computers," said Professor Gabriel Aeppli, UCL Director of the LCN.

"While this may seem esoteric, there are deep connections between what has been achieved here and new types of computers, which also rely on the ability to tune quantum mechanics to solve hard problems, like pattern recognition in images."

"Dipolar Antiferromagnetism and Quantum Criticality in LiErF4" is published in the journal [Science] on 15th June 2012 and is embargoed to 14th June 2012. Journalists can obtain copies of the paper by contacting [either the UCL Media Relations Office or Science magazine.

####

About University College London
Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has 24,000 students from almost 140 countries, and more than 9,500 employees. Our annual income is over £800 million.

About Laboratory for Quantum Magnetism (LQM):

The Laboratory for Quantum Magnetism (LQM) - headed by Prof. Henrik M. Ronnow, who led the investigation - is part of Ecole Polytechnique Federale de Lausanne (EPFL), which is one of the two Swiss Federal Institutes of Technology. With the status of a national school since 1969, this young engineering school on the border of Lake Geneva has grown in many dimensions, to the extent of becoming one of the leading European institutions of science and technology. Its campus brings together over 11,000 students, researchers and staff, and hosts over 350 laboratories and research groups. Websites: www.lqm.epfl.ch and www.epfl.ch

About the London Centre for Nanotechnology:

The London Centre for Nanotechnology is an interdisciplinary joint enterprise between UCL and Imperial College London. In bringing together world-class infrastructure and leading nanotechnology research activities, the Centre has the critical mass to compete with the best facilities world-wide. Research programmes are aligned to three key areas, namely Planet Care, Healthcare and Information Technology and exploit core competencies in the biomedical, physical and engineering sciences. Website: /www.london-nano.com

For more information, please click here

Contacts:
Clare Ryan

44-020-310-83846
out of hours +44 (0)7917 271 364

Prof. Henrik M. Ronnow
+41 79 251 7302

or
Prof. Gabriel Aeppli
+44 (0)20 7679 0055 (ext: 30055)

Copyright © University College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Long Island Capital Alliance Announces Participants for Brookhaven National Laboratory Technology Transfer Capital Forum on May 8: Keynote Speaker Dr. Doon Gibbs, Director of Brookhaven National Laboratory April 16th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Research partnerships

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Quantum nanoscience

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE