Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Gold Nanoantennas boost the Emission Rate of Conjugated Polymers

Abstract:
Resonant plasmonic nanoantennas have been used to control the emission of light to various degrees, as the large local density of optical states in the near-field of the nanoantenna influences the emission properties. Theoretical studies have proposed to incorporate a semiconductor material into a metal nanoantenna, in analogy to the feed element in radio frequency antennas, in order to modify the semiconductor optical properties. Until now, however, the realization of such an integrated metal-semiconductor nanoantenna remained challenging.

Gold Nanoantennas boost the Emission Rate of Conjugated Polymers

Germany | Posted on June 8th, 2012

D. O'Carroll (Rutgers University) and co-workers have developed a novel fabrication process for metal-polymer-metal split-dipole nanoantenna heterostructures by sequential electrodeposition and thermal evaporation. The resonant scattering response of such antennas can be tuned to the polymer emission band by controlling the nanoantenna length. Using this approach, the radiative emission rate of poly(3-hexylthiophene) was enhanced by a factor of up to 29, in experiment, and 550 for the ideal case. Especially organic conjugated polymers such as polythiophenes, which exhibit high carrier mobilities but possess relatively poor luminescence properties, would benefit from incorporation into such plasmonic nanoantennas. This work demonstrates clearly that integrated metal-polymer-metal nanoantennas could enable a new generation of high-performance conjugated polymer optoelectronic devices.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research is reported in the second issue of Advanced Optical Materials, the new section in Advanced Materials (2010 IF: 10.880) dedicated to breakthrough discoveries and fundamental research in the field of light-matter interactions. It includes communications, full papers, and reviews:

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Discoveries

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Announcements

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic