Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stony Brook University Researchers Develop Groundbreaking New Graphene-Based MRI Contrast Agent

Balaji Sitharaman, PhD
Balaji Sitharaman, PhD

Abstract:
Dr. Balaji Sitharaman, PhD, an Assistant Professor in the Department of Biomedical Engineering at Stony Brook University, and a team of researchers developed a new, highly efficacious, potentially safer and more cost effective nanoparticle-based MRI (magnetic resonance imaging) contrast agent for improved disease diagnosis and detection. The most recent findings are discussed in detail in his team's research paper "Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons," published in the June 7 edition of the journal PLoS ONE.

Stony Brook University Researchers Develop Groundbreaking New Graphene-Based MRI Contrast Agent

Stony Brook, NY | Posted on June 7th, 2012

The MRI, the technology for which was invented at Stony Brook University by Professor Paul Lauterbur, is one of the most powerful and central techniques in diagnostic medicine and biomedical research used primarily to render anatomical details for improved diagnosis of many pathologies and diseases. Currently, most MRI procedures use gadolinium-based contrast agents to improve the visibility and definition of disease detection. However, recent studies have shown harmful side effects, such as nephrogenic systemic fibrosis, stemming from the use of this contrast agent in some patients, forcing the Food and Drug Administration (FDA) to place restrictions on the clinical use of gadolinium. Further, most MRI contrast agents are not suitable for extended-residence-intravascular (blood pool), or tissue (organ)-specific imaging, and do not allow molecular imaging.

To address the need for an MRI contrast agent that demonstrates greater effectiveness and lower toxicity, Dr. Sitharaman developed a novel high-performance graphene-based contrast agent that may replace the gadolinium-based agent which is widely used by physicians today. "A graphene-based contrast agent can allow the same clinical MRI performance at substantially lower dosages," said Dr. Sitharaman. The project is a Wallace H. Coulter Foundation Translational Research Award winner and the recipient of a two-year translational grant to study preclinical safety and efficacy.

"The technology will lower health care costs by reducing the cost per dose as well as the number of doses required," noted Dr. Sitharaman. "Further, since this new MRI contrast agent will substantially improve disease detection by increasing sensitivity and diagnostic confidence, it will enable earlier treatment for many diseases, which is less expensive, and of course more effective for diseases such as cancer."

The new graphene-based imaging contrast agent is also the focus of Dr. Sitharaman's start-up company, Theragnostic Technologies, Inc., which was incorporated in early 2012. The ongoing development of this technology is supported by industry expert and business advisor, Shahram Hejazi, and clinical experts Kenneth Shroyer, MD, PhD, Professor and Chair, Department of Pathology, Stony Brook University, and William Moore, MD, Chief of Thoracic Imaging, and Assistant Professor, Department of Radiology, Stony Brook University. Co-authors of the article include Department of Biomedical Engineering research assistants Bhavna Paratala, Barry Jacobson and Shruti Kanakia; and Leonard Deepak Francis from the International Iberian Nanotechnology Laboratory in Portugal.

Dr. Sitharaman's research team focuses their interests at the interface of bionanotechnology, regenerative and molecular medicine. They seek to "synergize" the advancements in each of these fields to develop a dynamic research program that tackles problems related to the diagnosis and treatment of disease and tissue regeneration. Dr. Sitharaman received his BS with Honors from the Indian Institute of Technology and his PhD from Rice University, where he also completed his postdoctoral work as a J. Evans Attwell-Welch Postdoctoral Fellowship recipient.

####

For more information, please click here

Contacts:
Stony Brook University Office of Media Relations
631.632.6310

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Photoacoustic imaging and photothermal cancer therapy using BR nanoparticles September 26th, 2017

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project