Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > High-temperature superconductivity starts with nanoscale electronic oases

Provided/Davis group
Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.
Provided/Davis group

Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.

Abstract:
High-temperature superconductivity doesn't happen all it once. It starts in isolated nanoscale patches that gradually expand until they take over.

High-temperature superconductivity starts with nanoscale electronic oases

Ithaca, NY | Posted on May 30th, 2012

That discovery, from atomic-level observations at Cornell and the University of Tokyo, offers a new insight into the puzzling "pseudogap" state observed in high-temperature superconductors; it may be another step toward creating new materials that superconduct at temperatures high enough to revolutionize electrical engineering.

Using extremely precise scanning tunneling microscopes (STM) that can observe the states of electrons around atoms, an international research team led by J.C. Sťamus Davis, the J.G. White Distinguished Professor in the Physical Sciences, and by Hidenori Takagi, professor of physics at the University of Tokyo, has for the first time observed how a high-temperature superconductor evolves as its chemical composition is modified. They found that as more "dopant" atoms are added, small, scattered superconducting areas, some just a few atoms across, appear. These grow until they touch and eventually fill the entire space, whereupon the entire material becomes a superconductor.

"Some theorists have imagined that this is what happens," Davis said, "but there has been no evidence until now." The research was reported May 20 in the online edition of the journal Nature Physics.

Superconductivity, in which an electric current flows with zero resistance, was first discovered in metals cooled very close to absolute zero (-273 degrees Celsius). New materials called cuprates -- copper oxides "doped" with other atoms -- superconduct as "high" as -123 Celsius.

Observations of high-temperature superconductors with the STM and other instruments show an "energy gap" where electronic states are missing. Theory says that electrons have left to join into "Cooper pairs" that can carry an electric current without interference. A puzzler for physicists is that sometimes this energy gap appears but the material still does not superconduct -- a so-called "pseudogap" phase. The pseudogap appears at higher temperatures than any superconductivity, offering the promise of someday developing materials that would superconduct at or near room temperature.

The researchers use STMs to scan a surface in steps smaller than an atom, measuring what electron energy levels are occupied and what electrons are conspicuous by their absence. They examined a series of samples of a material known as sodium-doped calcium cuprate, prepared with gradually increasing sodium content. As more sodium is added to the mix it displaces calcium atoms, changing the crystal structure and the arrangement of electrons in ways not completely understood. This particular cuprate was chosen because its simple chemistry allows fine tuning, Davis said. The phenomena observed had not been seen before because most cuprates make abrupt transitions from insulator to pseudogap to superconductor, he explained.

At a moderate level of doping, the STM finds small, scattered areas with the pseudogap signature. These areas also show a "broken symmetry" where the arrangement of electrons between copper and oxygen atoms differs between "north and south" and "east and west" in the square crystal lattice. Davis and colleagues had found this broken symmetry in earlier observations of the same superconductors.

As doping increases, these areas become larger until finally they touch, and the entire sample becomes a superconductor. It's presumed that the scattered pseudogap regions occur in the vicinity of dopant atoms, but those atoms were not observed in the current study, Davis said.

Previously, the researchers noted, it was thought that the pseudogap phase in cuprates might be in competition with superconductivity, something that had to be gotten out of the way before superconductivity could happen. This work, they said, suggests that it is beneficial -- a necessary step in the evolution of a superconductor.

The research was supported by the U.S. Department of Energy and the Japan Society for the Promotion of Science.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Physics

New pathway to valleytronics January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction January 19th, 2015

Superconductivity

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Phenomenon that fights with superconductivity universal across both flavors of cuprates January 16th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Discoveries

Creating new materials with quantum effects for electronics January 29th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Research partnerships

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE