Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > High-temperature superconductivity starts with nanoscale electronic oases

Provided/Davis group
Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.
Provided/Davis group

Scanning tunneling microscope image of a partially doped cuprate superconductor shows regions with an electronic "pseudogap" (rounded rectangle) others with no progress from the original insulator (dashed circles). As doping increases, pseudogap regions spread and connect, making the whole sample a superconductor.

Abstract:
High-temperature superconductivity doesn't happen all it once. It starts in isolated nanoscale patches that gradually expand until they take over.

High-temperature superconductivity starts with nanoscale electronic oases

Ithaca, NY | Posted on May 30th, 2012

That discovery, from atomic-level observations at Cornell and the University of Tokyo, offers a new insight into the puzzling "pseudogap" state observed in high-temperature superconductors; it may be another step toward creating new materials that superconduct at temperatures high enough to revolutionize electrical engineering.

Using extremely precise scanning tunneling microscopes (STM) that can observe the states of electrons around atoms, an international research team led by J.C. Sťamus Davis, the J.G. White Distinguished Professor in the Physical Sciences, and by Hidenori Takagi, professor of physics at the University of Tokyo, has for the first time observed how a high-temperature superconductor evolves as its chemical composition is modified. They found that as more "dopant" atoms are added, small, scattered superconducting areas, some just a few atoms across, appear. These grow until they touch and eventually fill the entire space, whereupon the entire material becomes a superconductor.

"Some theorists have imagined that this is what happens," Davis said, "but there has been no evidence until now." The research was reported May 20 in the online edition of the journal Nature Physics.

Superconductivity, in which an electric current flows with zero resistance, was first discovered in metals cooled very close to absolute zero (-273 degrees Celsius). New materials called cuprates -- copper oxides "doped" with other atoms -- superconduct as "high" as -123 Celsius.

Observations of high-temperature superconductors with the STM and other instruments show an "energy gap" where electronic states are missing. Theory says that electrons have left to join into "Cooper pairs" that can carry an electric current without interference. A puzzler for physicists is that sometimes this energy gap appears but the material still does not superconduct -- a so-called "pseudogap" phase. The pseudogap appears at higher temperatures than any superconductivity, offering the promise of someday developing materials that would superconduct at or near room temperature.

The researchers use STMs to scan a surface in steps smaller than an atom, measuring what electron energy levels are occupied and what electrons are conspicuous by their absence. They examined a series of samples of a material known as sodium-doped calcium cuprate, prepared with gradually increasing sodium content. As more sodium is added to the mix it displaces calcium atoms, changing the crystal structure and the arrangement of electrons in ways not completely understood. This particular cuprate was chosen because its simple chemistry allows fine tuning, Davis said. The phenomena observed had not been seen before because most cuprates make abrupt transitions from insulator to pseudogap to superconductor, he explained.

At a moderate level of doping, the STM finds small, scattered areas with the pseudogap signature. These areas also show a "broken symmetry" where the arrangement of electrons between copper and oxygen atoms differs between "north and south" and "east and west" in the square crystal lattice. Davis and colleagues had found this broken symmetry in earlier observations of the same superconductors.

As doping increases, these areas become larger until finally they touch, and the entire sample becomes a superconductor. It's presumed that the scattered pseudogap regions occur in the vicinity of dopant atoms, but those atoms were not observed in the current study, Davis said.

Previously, the researchers noted, it was thought that the pseudogap phase in cuprates might be in competition with superconductivity, something that had to be gotten out of the way before superconductivity could happen. This work, they said, suggests that it is beneficial -- a necessary step in the evolution of a superconductor.

The research was supported by the U.S. Department of Energy and the Japan Society for the Promotion of Science.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Journal Nanotechnology Progress International (JONPI), 2014, Volume 5, Issue 1, pp 1-24 October 22nd, 2014

Imaging

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Superconductivity

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Discoveries

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Announcements

NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Tools

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Research partnerships

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE