Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sensing the infrared: Researchers improve IR detectors with single-walled carbon nanotubes: New design eliminates need for complex, expensive cooling systems

This schematic shows the design of single-walled carbon nanotube photodetector, which provides a more efficient method of collecting infrared radiation without relying on cryogenics for cooling.

Credit: Image courtesy Sheng Wang, Peking University.
This schematic shows the design of single-walled carbon nanotube photodetector, which provides a more efficient method of collecting infrared radiation without relying on cryogenics for cooling.

Credit: Image courtesy Sheng Wang, Peking University.

Abstract:
Whether used in telescopes or optoelectronic communications, infrared detectors must be continuously cooled to avoid being overwhelmed by stray thermal radiation. Now, a team of researchers from Peking University, the Chinese Academy of Sciences, and Duke University (USA) is harnessing the remarkable properties of single-walled carbon nanotubes (SWNTs) to create highly sensitive, "uncooled" photovoltaic infrared detectors.

Sensing the infrared: Researchers improve IR detectors with single-walled carbon nanotubes: New design eliminates need for complex, expensive cooling systems

Washington, DC | Posted on May 23rd, 2012

This new type of detector, which the team describes in a paper published today in the Optical Society's (OSA) open-access journal Optical Materials Express, may prove useful for industrial, military, manufacturing, optical communications, and scientific applications.

Carbon nanotubes are known for their outstanding mechanical, electrical, and optical properties. "They also are an ideal nanomaterial for infrared applications," says Sheng Wang, an associate professor in the Department of Electronics at Peking University in Beijing, China, and an author of the Optical Materials Express paper. "For starters, these nanotubes exhibit strong and broadband infrared light absorption, which can be tuned by selecting nanotubes of different diameters. Also, due to their high electron mobility, nanotubes react very rapidly - on the order of picoseconds - to infrared light." In comparison to traditional infrared detectors, which are based on semiconductors made of a mercury-cadmium-telluride alloy, the SWNTs are an order of magnitude more efficient, the researchers report.

The team's photovoltaic infrared detector is formed by aligning SWNT arrays on a silicon substrate. The nanotubes arrays are then placed between asymmetric palladium and scandium contacts. These two metals have properties that collectively create what is known as an Ohmic contact, a region in a semiconductor device that has very low electrical resistance, which helps make the detector operate more efficiently.

"Fabrication of carbon nanotube infrared detectors can be readily implemented on a flexible substrate and large wafer at a low cost," explains Wang.

The detector demonstrated "acceptable sensitivity" at room temperature and may be significantly improved by increasing the density of the carbon nanotubes, according to the team. The signal-to-noise performance of conventional infrared photodetectors is limited by their natural infrared emission, which is subsequently absorbed by the detector. To avoid having this stray radiation overwhelm the detector, liquid nitrogen or electric cooling is generally used to suppress this thermal effect. However, this makes infrared detectors more complex and expensive to operate. The new design eliminates this need because carbon nanotubes have special thermal properties. At room temperature, they emit comparatively little infrared radiation of their own, especially when the carbon nanotube is on the substrate. In addition, nanotubes are very good at conducting heat, so temperatures do not build up on the detector itself.

One of the biggest surprises for the team was achieving relatively high infrared detectivity (the radiation power required to produce a signal from a photoconductor) using a carbon nanotube thin film only a few nanometers thick, Wang points out. Notably, conventional infrared detectors require much thicker films, on the scale of hundreds of nanometers, to obtain comparable detectivity.

Another huge advantage of the detector is that the fabrication process is completely compatible with carbon nanotube transistors - meaning no big expensive equipment changes are necessary. "Our doping-free chemical approach provides an ideal platform for carbon nanotube electronic and optoelectronic integrated circuits," says Wang.

The next step for the team is to focus on improving the detectivity of the detector with greater SWNT density, and to also achieve a wide spectrum response with improved diameter control.

####

About Optical Society of America
Uniting more than 130,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

About Optical Materials Express

Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. For more information, visit www.OpticsInfoBase.org/OMEx.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, "Carbon Nanotube Arrays Based High-Performance Infrared Photodetector,"by Q. Zeng et al.:

Will appear in a special feature issue on "Nanocarbon for Photonics and Optoelectronics" in Vol. 2, Issue 6 of Optical Materials Express:

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Sensors

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Solar/Photovoltaic

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE