Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Printing with Lasers: Making Electronics Quick and Easy

An optical microscopy image on of the channels in a printed OECT array.
An optical microscopy image on of the channels in a printed OECT array.

Abstract:
The field of printed electronics has given us a vision of ubiquitous electronic products, integrated on everyday, low-cost products, such as sensors or labels that can be printed on flexible substrates for food packages to indicate fresheness, temperature, or other important parameters. However, printing of electronic devices requires a resolution that is beyond the limit of conventional graphical printing. Another bottleneck that prevents production scale-up (e.g. roll-to-roll or sheet-based manufacturing) is the accuracy of the positioning of the substrate between the individual process steps.

Printing with Lasers: Making Electronics Quick and Easy

Germany | Posted on May 17th, 2012

Now, in new work, a German-Swedish research collaboration between the Chemnitz University of Technology, the Fraunhofer Institute of Electronic Nanosystems (Chemnitz), Linköping University, and Acreo AB (Norrköping, a research institute from the Swedish ICT sector), present a novel, hybrid manufacturing concept for organic electrochemical transistors (OECTs).

Initiated by the EU ICT FP7 Network of Excellence "PolyNet" (2008-2010, grant agreement 214006), the researchers combined standard printing and laser microstructuring techniques. The nice thing with OECTs is that their electrical parameters do not strictly relate to the feature size: low-voltage operation is independent of the transistor channel length and the thickness of the dielectric layer, lowering the resolution demands compared to other transistor concepts like field-effect transistors.

Addressing the alignment precision, the key of the manufacturing concept is to have the laser light find its target automatically: only when and where the scanning laser hits the printed conductive layer, the material is delaminated and the layer is separated into the two electrodes, source and drain. At the same time, the deposited heat introduces a vertical void in the transparent dielectric layer above. The void is autonomously filled by capillary forces when applying a semiconductor material in a subsequent printing step. Finally, after printing a liquid electrolyte, a coated plastic foil is laminated on the stack from the top, forming the gate electrode and completing the transistor.

The subtractive step allows for printing arrays of OECTs (17×50) on DIN A4 (297×210 mm²) flexible sheet substrates. As a perspective, the combined usage of digital techniques (scanning laser, inkjet printing) can pave the way for personalized devices, e.g. arrays of OECTs with varying electrolytes as the active elements in printed large-area sensor arrays.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Discoveries

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE