Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Delivering Nanoparticles to the Cell Nucleus

Abstract:
While a great deal of the potential for nanotechnology to improve cancer therapy lies with the ability of nanoparticles to deliver drug payloads directly to tumors, an equally important consideration is whether nanoparticles can then get their drug payload to their intended target inside tumor cells. Now, a team of investigators from the Northwestern University Center for Cancer Nanotechnology Excellence (Northwestern CCNE) has developed star-shaped nanoparticle that can deliver a drug directly to a cancer cell's nucleus—an important feature for many potential anticancer therapies.

Delivering Nanoparticles to the Cell Nucleus

Bethesda, MD | Posted on May 14th, 2012

The Northwestern CCNE team, led by Teri Odom, also reported that it was able to directly image at nanoscale dimensions how nanoparticles interact with a cancer cell's nucleus. Dr. Odom and her collaborators published their results in the journal ACS Nano.

"Our drug-loaded gold nanostars are tiny hitchhikers," said Dr. Odom. "They are attracted to a protein on the cancer cell's surface that conveniently shuttles the nanostars to the cell's nucleus. Then, on the nucleus' doorstep, the nanostars release the drug, which continues into the nucleus to do its work."

The nanoparticle is made of gold and shaped much like a star, with five to 10 points. The particle's large surface area allows the researchers to load a high concentration of drug molecules onto the nanostar. The drug used in the study is a short piece of single-stranded DNA, known as an aptamer, which like an antibody binds tightly to a specific molecular target. Approximately 1,000 of these aptamers are attached to each nanostar's surface.

The DNA aptamer serves two functions. First, it binds to nucleolin, a protein overexpressed in cancer cells and found both on the cell surface and within the cell nucleus. Then, when released from the nanostar, the DNA aptamer also acts as the drug itself.

Bound to the nucleolin, the drug-loaded gold nanostars take advantage of the protein's role as a shuttle within the cell and hitchhike their way to the cell nucleus. The researchers then direct ultrafast pulses of light -- similar to that used in LASIK surgery -- at the cells. The pulsed light cleaves the bond attachments between the gold surface and the DNA aptamers, which then can enter the nucleus.

In addition to allowing a large amount of drug to be loaded, the nanostar's shape also helps concentrate the light at the points, facilitating drug release in those areas. Drug release from nanoparticles is a difficult problem, Odom said, but with the gold nanostars the release occurs easily. That the gold nanostar can deliver the drug without needing to pass through the nuclear membrane means the nanoparticle is not required to be a certain size, offering design flexibility.

Using an electron microscope, Odom and her team found their drug-loaded nanoparticles dramatically change the shape of the cancer cell nucleus. What begins as a nice, smooth ellipsoid becomes an uneven shape with deep folds. They also discovered that this change in shape after drug release was connected to cells dying and the cell population becoming less viable -- both positive outcomes when dealing with cancer cells.

Since this initial research on human ovarian and cervical cancer cells, the researchers have gone on to study effects of the drug-loaded gold nanostars on 12 other human cancer cell lines. The effect was much the same. "All cancer cells seem to respond similarly," Odom said. "This suggests that the shuttling capabilities of the nucleolin protein for functionalized nanoparticles could be a general strategy for nuclear-targeted drug delivery."

Odom envisions the drug-delivery method, once optimized, could be particularly useful in cases where tumors are fairly close to the skin's surface, such as skin and some breast cancers. (The light source would be external to the body.) Surgeons removing cancerous tumors also might find the gold nanostars useful for eradicating any stray cancer cells in surrounding tissue

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Direct observation of nanoparticle–cancer cell nucleus interactions."

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Nanomedicine

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE