Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CEA-Leti and Arkema set up a platform dedicated to lithography based on nanostructured polymers

Abstract:
The semiconductor industry forecasts a doubling of the performances of electronic components every 18 months. However, the current printing technology - lithography - has to address the physical constraints of ever-greater miniaturization of silicon chips. CEA-Leti and Arkema, in association with LCPO (Laboratoire de Chimie des Polymères Organiques) of Bordeaux, have succeeded in going beyond the boundaries of the infinitely small by showing the unique resolution potential of lithography based on nanostructured polymers. These initial results meet the requirements of the next 4 generations of electronic chips. Building on this success, CEA-Leti and Arkema have created a development platform dedicated to this technology.

CEA-Leti and Arkema set up a platform dedicated to lithography based on nanostructured polymers

Colombes, France | Posted on May 11th, 2012

As part of their joint laboratory, Arkema and CEA-Leti, with the help of Professor Hadziioannou's team of LCPO, have successfully obtained a 20 nanometer (nm) pitch* and reduced the diameter of contacts down to 7 nm thanks to nanostructured polymers, thereby demonstrating the compatibility of this technology for technological nodes ranging from 20 nm to sub-10 nm.

A collaborative research platform

On the strength of these initial positive results, Arkema and CEA-Leti have created IDEAL (Insertion of DSA** lithography for CMOS*** application), a collaborative research platform dedicated to the development and industrialization of lithography based on nanostructured polymers. This platform relies on CEA-Leti's expertise in process and electronic component integration, and on Arkema's know-how in the development and industrialization of nanostructured polymers. These complementary capabilities will help adapt materials and processes to achieve optimum results and make the technology available to the semiconductor industry without delay.

Going beyond the boundaries of « classic » lithography

The semiconductor industry has had to contend with the limits of conventional optical lithography for several years now. The cost and the problems encountered with the EUV**** technology undermine the feasibility of the technological roadmap of micro-electronics. Lithography by self-assembly (or nanostructuring) of polymers is a highly promising technological alternative due to its low manufacturing costs and its straightforward integration in existing processes for the manufacture of microprocessors and other electronic chips.

Since the early 2000s, Arkema has been developing for various applications a block copolymer technology that yields innovative nanostructured materials boasting a wide range of properties, some of which are particularly suited to self-assembled lithography.

CEA-Leti operates at the heart of developments for the most advanced CMOS technologies within its 300 mm pilot line and in partnership with this sector's world players.

« The creation of this platform is an initial success for our brand-new collaboration, and it illustrates the importance of combining material, process and integration know-how at an early stage. It also bears testimony to Arkema's ability to develop new copolymers and to adapt its industrial resources to this demanding micro-electronics sector in terms of product performance and purity », declares Ian Cayrefourcq, Director Emerging Technologies at Arkema.

« Lithography based on nanostructured copolymers opens up very encouraging prospects in terms of performance and cost for the semiconductor industry. Cooperation between Arkema, an innovative world-leading chemical company, and CEA-Leti, a world-renowned institute in the integration of CMOS technologies, will help develop materials and processes directly transferrable and compatible with the industry's standards », points out Laurent Malier, CEA-Leti Director.

* Pitch: distance separating two interconnecting lines

** DSA: Directed Self-Assembly

*** CMOS: Complementary Metal Oxide Silicon

**** EUV: Extreme Ultra Violet

####

About CEA-Leti
Leti (Laboratoire d'Électronique de Technologie de l'Information) is an institute of CEA, a French research and technology organization with activities in energy, IT, healthcare, defense and security. Leti is focused on creating value and innovation through technology transfer to its industrial partners. It specializes in micro- and nanotechnologies and their applications, from wireless devices and systems, to biology, healthcare and photonics, as well as in Micro-Nano Systems (MNS). An anchor of the MINATEC campus, CEA-Leti operates 8,000-m² of state-of-the-art clean room space on 200mm and 300mm wafer platforms. It counts 1,700 scientists and engineers, including 240 Ph.D. students and post-doctoral researchers and 200 assignees from partner companies. CEA-Leti owns more than 1,880 patent families.

For more information, visit www.leti.fr


A global chemical company and France’s leading chemicals producer, Arkema is building the future of the chemical industry every day. Deploying a responsible, innovation-based approach, we produce state-of-the-art specialty chemicals that provide customers with practical solutions to such challenges as climate change, access to drinking water, the future of energy, fossil fuel preservation and the need for lighter materials. With operations in more than 40 countries, some 13,200 employees and 9 research centers, Arkema generates annual revenue of €5.9 billion*, and holds leadership positions in all its markets with a portfolio of internationally recognized brands. The world is our inspiration.

*Sales and headcount for continuing activities at end 2011, excluding vinyl products activities, which are part of a divestment plan.

For more information, please click here

Contacts:
Press Contacts

CEA
Vincent Coronini

+33 4 38 78 44 30

Arkema
Sybille Chaix

+ 33 1 49 00 70 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project