Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Peratech creates fast-acting Electronic Nose using QTC technology

Granular QTC used in Peratech's nose
Granular QTC used in Peratech's nose

Abstract:
Peratech, the innovator in touch technology, is developing an Electronic Nose using its award-winning, Quantum Tunnelling Composite material. This new sensor technology detects the presence of Volatile Organic Compounds (VOCs) very rapidly and can recover equally quickly, in a matter of seconds.

Peratech creates fast-acting Electronic Nose using QTC technology

Richmond, UK | Posted on May 11th, 2012

QTC™ materials change their resistance when a force is applied and, in this case, the polymer content of the composite swells when exposed to VOCs. One form of Peratech's sensor uses a granular type of QTC material that provides a high surface area for absorption enabling it to detect levels of VOCs in the region of 10-100 ppm. The sensor rapidly recovers once the VOCs have gone from the surrounding atmosphere and it is the speed of sensing and recovery that marks the difference between QTC sensors and those using other sensing technologies. An additional feature of the QTC technology is that it has very low power requirements.

"The electronic nose application was developed in conjunction with the Quantum Tunnelling Composite research group at the University of Durham," explained David Lussey, CTO of Peratech. "We are now looking for companies who are interested in licensing the technology from us to develop products."

Professor David Bloor, who is involved in a long-term collaboration with Peratech, added, "Quantum Tunnelling Composite is unique in the area of materials science and a team of researchers and students have been involved in the investigation of its properties. These never cease to amaze and open up different ways in which it can be used."

The conductive particles used in the QTC Electronic Nose have nano-sized features and are distributed in a non-conductive polymer. When a force is applied or swelling occurs, the particles move close enough for the electron flow between the particles to alter due to an effect called Quantum Tunnelling. The polymer used is selected for its response to the particular VOCs to be monitored.

####

About Peratech Limited
Peratech is the inventor of Quantum Tunnelling Composite technology. QTC materials are re-inventing the Human Machine Interface with Touch Innovation™ that improves, extends and enhances the user experience - making possible solutions that could not be made before. QTC materials give enormous flexibility in the design, shape, thickness and style of a switch or touch sensor and can be made in a range of forms from traditional switch replacements, through textile and screen printed switches to innovative, pressure-sensitive QTC Touchscreens that allow for three dimensions of input. QTC solutions are thinner, smaller, more discrete, less expensive and ultra-reliable as there are no moving parts. A Touch Amazing™.

For more information, please click here

Contacts:
Peratech Limited
Old Repeater Station
Brompton-on-Swale, North Yorkshire, DL10 7JH United Kingdom
Tel: +44 (0) 8700 727272
Fax: +44 (0) 8700 727273


Nigel Robson
Vortex PR
Island House, Forest Road
Forest, Guernsey, GY8 0AB United Kingdom
Tel: +44 (0) 1481 233080

Copyright © Peratech Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Quantum nanoscience

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project