Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotrons Offers Automated Layer-by-Layer Assembly of Nanotechnology Enabled Coatings

Abstract:
Nanotrons Corporation offers an automated coating system for material researchers to develop and produce nano-enabled optical coatings using layer-by-layer (LbL) self-assembly. Multilayer, ultrathin films can be designed and assembled at molecular dimensions with precise control of thickness and composition. The SPray Assisted Layer-by-layer Assembly System (SPALAS™) provides drastically shorter processing times compared to alternative methods and equipment.

Nanotrons Offers Automated Layer-by-Layer Assembly of Nanotechnology Enabled Coatings

Woburn, MA | Posted on May 11th, 2012

SPALAS LbL assembly offers simplicity and universality for arranging molecules and nanoparticles only 1-10 nm in size in layers to form a thin film coating for an ever increasing number of technological applications. It is an eco-friendly automated process performed in a laboratory or production environment without the need for temperature or pressure control.

The SPALAS coating system uses a wet chemistry LbL adsorption process, based on chemical or electrostatic interactions between the material building blocks. SPALAS allows the application for even optical grade coatings on various substrate materials, including semiconductor substrates, plastics and glass. SPALAS coating technology has a broad range of applications, including solar panel light absorption enhancement, anti-reflection coating of optical surfaces, IR optical coatings, anti-fog coatings, and other nanostructured multi-functional coatings.

SPALAS provides a robust self-assembly process that produces high performance thin films with many advantages over traditional vacuum or sol-gel based coatings, including unparallel low acquisition and material costs, compact footprint, ease of use, and uniformith and scalability for very large substrates. The basic unit provides programmable spraying control easily generates self-assembled coatings on substrates up to 6" x 10" in size including complex surfaces such as tubes and fibers. SPALAS allows for alternating application of positively and negatively charged functional groups in solution, with intermediate washing and drying steps, as well as simultaneous application of multiple solutions. The compact system readily fits on a bench top.

####

About Nanotrons Corporation
Nanotrons Corporation, based in Woburn MA, is a wholly owned subsidiary of Agiltron Inc. Nanotrons' vision is to leverage its proprietary advanced nano-engineering technologies to develop solutions to various 21st century challenges confronted by mankind related to energy, water, environment, and terrorism. The company's goal is to create products with revolutionary performance benefits for energy storage, water treatment, environmental sensing and monitoring, and advanced structural materials and coatings. Other Nanotrons products include silver nanowires and graphene.

For more information, please click here

Contacts:
King Wang
Nanotrons Corporation
T: 781-935-1200
F: 781-935-2040

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Thin films

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

IBS report electric transport across molybdenum disulfide grain boundaries: Scientific team from CINAP/IBS identifies previously undiscovered differences in grain boundaries January 28th, 2016

Self Assembly

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Polymer nanowires that assemble in perpendicular layers could offer route to tinier chip components January 23rd, 2016

Nanodevice, build thyself: Researchers in Germany studied how a multitude of electronic interactions govern the encounter between a molecule called porphine and copper and silver surfaces January 18th, 2016

Materials/Metamaterials

Chemical cages: New technique advances synthetic biology February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

Making sense of metallic glass February 9th, 2016

Graphene decharging and molecular shielding February 8th, 2016

Announcements

Composite Pipe Long Term Testing Facility February 10th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Photonics/Optics/Lasers

Scientists take nanoparticle snapshots February 10th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic