Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bio-inspired polymer synthesis enhances structure control

Abstract:
A new bio-inspired approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

Bio-inspired polymer synthesis enhances structure control

Sydney, Australia | Posted on May 2nd, 2012

In a study published last week in the prestigious journal Nature Chemistry, researchers from the University of New South Wales in Sydney and the University of Warwick in the UK have outline a new method of polymer synthesis based on a combination of segregation and templating - a pair of natural approaches that have evolved over billions of years to direct complex biological processes.

Segregation improves biochemical control in organisms' cells by organising reactants into defined, well-regulated environments, while the transfer of genetic information is a primary function of templating, states the paper.

"The ability to synthesise polymers with such precision and control will enable us to tailor-make polymers for specific needs, with major applications in materials chemistry, nanotechnology and nanomedicine," says co-author Associate Professor Per Zetterlund, Deputy Director of the Centre for Advanced Macromolecular Design (CAMD) in the School of Chemical Engineering at UNSW.

Polymers are large molecules comprising thousands of small molecules - or monomers - bonded together to form a chain-like structure. Polymers can have different properties and functionality depending on their constituent parts, and a range of high-tech applications.

One way of growing these chains is through a process known as radical polymerisation, which uses free radicals. These are molecules or atoms with unpaired electrons and are consequently very reactive. Free radicals initiate chain growth by adding to a monomer unit, explains Zetterlund. This generates a new radical that adds to the monomer unit again, and so on, in a continuing process.

However, conventional radical polymerisation yields polymers of ill-defined structure, says Zetterlund: they have a wide-range of molecular weights, the monomer sequence distribution along the chain is difficult to control and the length of the chain cannot be predetermined.

"One of the long-standing goals in synthetic polymer chemistry is to be able to synthesise polymers of well-defined microstructure," says Zetterlund. "Our approach offers much better control over molecular weight distributions, gives access to higher molecular weights, and offers potential to control tacticity and monomer sequence distribution."

This allows researchers to better control the physical and mechanical properties of the polymer, which determines its functionality, and could enable sequence-controlled polymerisation and thus controlled polymer folding, two pinnacles of polymer science, says Zetterlund.

"The overall structure in biopolymers is dictated by how the polymer chains fold - or arrange themselves in space - as exemplified by the DNA double helix," explains Zetterlund. "To be able to mimic such behaviour, it is necessary to be able to prepare polymers with very specific distributions of monomers along the chain."

Zetterlund co-authored the paper with Professor Rachel O'Reilly, Dr Ronan McHale and Joseph Patterson from the University of Warwick.

####

For more information, please click here

Contacts:
Myles Gough
UNSW Media Office

61-029-385-1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project