Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bio-inspired polymer synthesis enhances structure control

Abstract:
A new bio-inspired approach to synthesising polymers will offer unprecedented control over the final polymer structure and yield advances in nanomedicine, researchers say.

Bio-inspired polymer synthesis enhances structure control

Sydney, Australia | Posted on May 2nd, 2012

In a study published last week in the prestigious journal Nature Chemistry, researchers from the University of New South Wales in Sydney and the University of Warwick in the UK have outline a new method of polymer synthesis based on a combination of segregation and templating - a pair of natural approaches that have evolved over billions of years to direct complex biological processes.

Segregation improves biochemical control in organisms' cells by organising reactants into defined, well-regulated environments, while the transfer of genetic information is a primary function of templating, states the paper.

"The ability to synthesise polymers with such precision and control will enable us to tailor-make polymers for specific needs, with major applications in materials chemistry, nanotechnology and nanomedicine," says co-author Associate Professor Per Zetterlund, Deputy Director of the Centre for Advanced Macromolecular Design (CAMD) in the School of Chemical Engineering at UNSW.

Polymers are large molecules comprising thousands of small molecules - or monomers - bonded together to form a chain-like structure. Polymers can have different properties and functionality depending on their constituent parts, and a range of high-tech applications.

One way of growing these chains is through a process known as radical polymerisation, which uses free radicals. These are molecules or atoms with unpaired electrons and are consequently very reactive. Free radicals initiate chain growth by adding to a monomer unit, explains Zetterlund. This generates a new radical that adds to the monomer unit again, and so on, in a continuing process.

However, conventional radical polymerisation yields polymers of ill-defined structure, says Zetterlund: they have a wide-range of molecular weights, the monomer sequence distribution along the chain is difficult to control and the length of the chain cannot be predetermined.

"One of the long-standing goals in synthetic polymer chemistry is to be able to synthesise polymers of well-defined microstructure," says Zetterlund. "Our approach offers much better control over molecular weight distributions, gives access to higher molecular weights, and offers potential to control tacticity and monomer sequence distribution."

This allows researchers to better control the physical and mechanical properties of the polymer, which determines its functionality, and could enable sequence-controlled polymerisation and thus controlled polymer folding, two pinnacles of polymer science, says Zetterlund.

"The overall structure in biopolymers is dictated by how the polymer chains fold - or arrange themselves in space - as exemplified by the DNA double helix," explains Zetterlund. "To be able to mimic such behaviour, it is necessary to be able to prepare polymers with very specific distributions of monomers along the chain."

Zetterlund co-authored the paper with Professor Rachel O'Reilly, Dr Ronan McHale and Joseph Patterson from the University of Warwick.

####

For more information, please click here

Contacts:
Myles Gough
UNSW Media Office

61-029-385-1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project