Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electric charge disorder: A key to biological order? Strong attraction that arises between biological objects with random patches of electric charge on an otherwise neutral surface may partly explain pattern recognition in biology

Abstract:
Theoretical physicist Ali Naji from the IPM in Tehran and the University of Cambridge, UK, and his colleagues have shown how small random patches of disordered, frozen electric charges can make a difference when they are scattered on surfaces that are overall neutral. These charges induce a twisting force that is strong enough to be felt as far as nanometers or even micrometers away. These results, about to be published in EPJ Eš, could help to understand phenomena that occurr on surfaces such as those of large biological molecules.

Electric charge disorder: A key to biological order? Strong attraction that arises between biological objects with random patches of electric charge on an otherwise neutral surface may partly explain pattern recognition in biology

Tehran, Iran and Cambridge, UK | Posted on April 30th, 2012

To measure the strength of the twist that acts on a randomly charged surface, the authors used a sphere which was mounted like a spinning top next to a randomly charged flat substrate. Because small amounts of positive and negative charges were spread in a disordered mosaic throughout both surfaces, they induced transient attractive or repulsive twisting forces. This was regardless of the surfaces' overall electrical neutrality, thus making the sphere spin. Using statistical averaging methods, the authors studied the fluctuations of these forces.
The authors found that the twisting force, created by virtue of the disorder of surface charges, is expected to be much stronger and far-reaching than the remnant forces. The latter are always present, even in the absence of charge disorder, and are due to fluctuations at the atomic and molecular levels.
This could have implications for large randomly charged surfaces such as biological macromolecules, which may be exposed to strong electrostatic forces, inducing attraction and/or repulsion, even if they carry no overall net charge. For instance, this phenomenon could partly explain biological pattern recognition, such as lock and key phenomena. In that context, the twisting force could explain the attraction between biological macromolecules that lead to pre-alignment prior to their interaction.
Reference:
1. Naji A., Sarabadani J., Dean D.S., and Podgornik R. (2012), Sample-to-sample torque fluctuations in a system of coaxial randomly charged surfaces, European Physical Journal E (EPJ E). DOI 10.1140/epje/i2012-12024-y

####

For more information, please click here

Contacts:
Janine Haubenreisser

49-622-148-78414

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Visit the homepage of the European Physical Journal:

Article on SpringerLink:

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Physics

Graphene under pressure August 26th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70° Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic