Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Penn Researchers Create First Custom Designed Protein Crystal

An illustration of the researchers' target protein crystal. (ART: Christopher MacDermaid)
An illustration of the researchers' target protein crystal.

(ART: Christopher MacDermaid)

Abstract:
Protein design is technique that is increasingly valuable to a variety of fields, from biochemistry to therapeutics to materials engineering. University of Pennsylvania chemists have taken this kind of design a step further; using computational methods, they have created the first custom-designed protein crystal.

Penn Researchers Create First Custom Designed Protein Crystal

Philadelphia, PA | Posted on April 25th, 2012

Picking an ambitious design target with challenging features, the researchers' success bodes well for the technique's use in better understanding proteins' makeup or using their self-assembling properties in making new materials with unique properties.

The research was conducted by professor Jeffrey G. Saven, postdoctoral fellow Christopher J. Lanci and graduate student Christopher M. MacDermaid, all of the Department of Chemistry in Penn's School of Arts and Sciences. Also contributing to the work were Seung-gu Kang and Xi Yang, formerly of the chemistry department, and Rudresh Acharya, Benjamin North, X. Jade Qiu and William F. DeGrado, formerly of Penn's Perelman School of Medicine's Department of Biochemistry and Biophysics.

The team's research was published in the journal Proceedings of the National Academy of Science.

Proteins are folded strings of molecular building blocks known as amino acids; their different functions are determined by their sequences of amino acids and the shapes they take when folded. As proteins are involved in most biological processes, determining sequences and structures is crucial to many scientific undertakings, such as understanding disease mechanisms or designing drugs to disrupt them.

To determine protein structures, scientists use crystals, which consist of many copies of a single protein lined up and stacked together. By irradiating the crystal with powerful X-rays, they can measure the way the light diffracts off the atoms and piece together the protein's overall three-dimensional shape and composition. Most proteins don't naturally crystalize, however, and making crystals of sufficient quality to do diffraction studies is a hit-or-miss process that can take years of painstaking work.

Protein crystals are also attractive as a nano-scale building material, as their properties, particularly their exterior surfaces, are highly customizable. However, bioengineers run into the same hurdles as crystallographers; making a protein crystal with a particular structure is a complex, hard-to-predict task.

"People have designed crystals out of smaller, much less complex molecules than proteins, but protein design is much more subtle," Saven said. "It's a complicated symphony of intermolecular interactions."

As accounting for these many interactions is one of the principal challenges behind designing a protein crystal, the researchers selected a complicated, honeycomb-shaped target to show their process could be widely applied.

That process involved finding the right protein and designing how copies of it will interact with each other. To tackle the tremendous number of variables involved, the researchers developed a theoretical method and computer algorithm to search through potential proteins for ones that could crystalize into their target.

The researchers targeted a crystal built using a relatively small protein containing a sequence of 26 amino acid positions. The researchers assigned specific amino acids to eight of the positions, but, with 18 different types of amino acid to choose from for each of the remaining 18 slots, the algorithm addressed well more than 1022 potential combinations. On top of that, the researchers had to account for other characteristics, such as the spacing between proteins and their orientation with respect to one another. These variables multiplied the already astronomically large number of possibilities, so maximizing the efficiency of the search was a priority.

"We worked on synthesizing both of those steps, doing the characterization of structure and the sequence at the same time," Saven said. "As we move through this process, we eliminate things that will never work, such as proteins where atoms overlap in space or where amino acids don't fit into a given site. At the same time, we identify proteins that, as you vary the structure, are likely to yield a crystal."

"Combining theory with recent advances in computer hardware have really allowed us to consider thousands of candidates, instead of a just a handful," MacDermaid said

After a full day of computation, the researchers' algorithm produced a handful of promising candidates. Critically, these proteins had very different sequences from one another. Even with their computational approach, finding the protein that would crystalize into their target involved trial and error.

"One reason to consider a very broad range of candidate proteins is that in nature you have proteins that are the same across organisms — the same name, structure and function — but their sequences are often very different," Saven said. "Nature finds many different possible solutions to the same problem, so we wanted to develop methods that allow us to say something about many disparate possible solutions."

This approach is particularly important when considering the eventual applications of a protein crystal. One sequence may crystalize perfectly but be toxic to cells, making it difficult to produce or unusable for a biotechnological application. A non-toxic sequence may form the crystal but only in tiny quantities.

"It's an important part of our algorithm that you don't end up with single sequence and put all of your eggs in one basket," Lanci said. "You get a large landscape of possibilities, improving the odds that you'll find one that can overcome all the experimental challenges you can't control for."

Beyond presenting multiple candidates, the computational approach has the advantage of finding proteins that will produce diffraction-quality crystals. The researchers saw their candidate proteins begin to crystalize within hours, a process that can often take weeks or months.

Though they achieved their goal, the target crystal the researchers produced is just a proof of concept. The researchers' algorithm represents an important tool kit for better understanding the principles behind protein crystallization and the many variables involved. By adding that understanding back into the algorithm, researchers will be able to search for candidate proteins more efficiently.

"There's still much we don't know about the interactions that govern crystallization," Saven said. "With this technique, we can explore what those interactions are or how we might take an existing protein and engineer those interactions so we get much better structures."

The research was supported by the National Science Foundation, Department of Energy, National Institutes of Health, Penn Nano/Bio Interface Center and Penn's Laboratory for Research on the Structure of Matter.

X. Jade Qiu and William F. DeGrado are now in the Department of Pharmaceutical Chemistry at the University of California, San Francisco. Seung-gu Kang is now a postdoctoral fellow at IBM; Xi Yang is now at Citic Securities.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nanomedicine

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE