Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance. (Credit: Evgeni Penev/Rice University)
Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance.

(Credit: Evgeni Penev/Rice University)

Abstract:
When is nothing really something? When it leads to a revelation about boron, an element with worlds of unexplored potential.

Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Houston, TX | Posted on April 23rd, 2012

Theoretical physicist Boris Yakobson and his team at Rice University have taken an unusual approach to analyzing the possible configurations of two-dimensional sheets of boron, as reported this week in the American Chemical Society journal Nano Letters.

Treating it as Swiss cheese - in which the holes are as defining as the cheese itself - was the key concept in figuring out what atom-thin sheets of boron might look like. Those sheets, when rolled into a hollow tube, or nanotube, could have a distinct advantage over carbon nanotubes; boron nanotubes are always metallic, while the carbon atoms in a nanotubes can bearranged to form either metallic or semiconducting nanotubes. This variation in atomic arrangement -- known as chirality -- is one of the major hurdles to carbon nanotube processing and development.

"If I dream wildly, I like to think boron nanotubes would make a great energy-transporting quantum wire," said Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science andprofessor of chemistry. "It would have the benefits of carbon, but without the challenge of selecting a particular symmetry."

A boron lattice, even in just two dimensions, can have a range of configurations, Yakobson said. Fully packed, it's a layer of atoms arranged in triangles. That's one extreme. But take one atom out, and what was six triangles becomes a hexagon. Take all such possible atoms out and the sheet looks exactly like graphene, the two-dimensional, single-atom thick form of carbon that has been all the rage in the world of chemistry and materials science for the past decade.

Between those two extremes are thousands of possible forms of pure boron in which missing atoms leave patterns of hexagonal holes.

"Carbon is well-defined," said Yakobson, whose theories focus on the interactions at play among atoms as they bond and break. "Any deviation in graphene's hexagonal form is what we call a defect, which has negative connotations.

"But we find there is a rich variety in two-dimensional boron," he said. "It's all purified - there's no non-boron here, even though there are vacancies, empty sites. The amazing thing is that nature prefers to have it that way; Not hexagonal, where every third position is missing an atom, and not a triangular lattice. The optimum is right in the middle."

In that most-stable middle ground, the researchers found 10 to 15 percent of the boron atoms in a lattice were missing, leaving "vacancy concentrations" in a variety of patterns.

Yakobson said using traditional computational methods to assess thousands of boron configurations would have cost too much and taken too long. So he and Rice research scientist Evgeni Penev applied cluster expansion, a method of calculation more commonly applied to alloys.

"Evgeni gave it a twist: He treated the empty spaces as the second alloy ingredient, in the same way you can't have Swiss cheese without 'alloyed in' voids and real cheese. In this calculation, the holes are an equal, physical entity."

With space as a pseudoalloy, the researchers found a range of formation energies one might employ to identify stable sheets of boron with particular vacancy concentrations. They also found that synthesized boron layers would probably be polymorphic: Each sheet could contain a jumble of patterns and still be considered pure boron.

"Polymorphic means that all these possibilities are pretty much equal, and equally likely to form," Yakobson said.

"This is a small part of the fundamental physics," Penev said. "The next step is to consider more practical things, like whether it can be synthesized and under what conditions."

Yakobson, who in 2007 first theorized the possibility of an 80-atom boron "buckyball," said that while boron is difficult to work with, that difficulty makes it more rewarding. "On one hand, it's very hard to conceive a possibility or to get experimental evidence. On the other hand, the field isn't as crowded as graphene."

Co-authors of the paper are Rice postdoctoral researchers Somnath Bhowmick and Arta Sadrzadeh.

The research was supported by the Department of Energy and the National Science Foundation through funding of Rice's DAVinCI computer cluster, administered by the Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

Physics

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

New pathway to valleytronics January 27th, 2015

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Graphene

Discovery Channel taps Angstron Materials for segment featuring graphene advances January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Graphenea sales more than double in 2014 January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Chemistry

Creating new materials with quantum effects for electronics January 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Materials/Metamaterials

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Quantum nanoscience

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Creating new materials with quantum effects for electronics January 29th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE