Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance. (Credit: Evgeni Penev/Rice University)
Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance.

(Credit: Evgeni Penev/Rice University)

Abstract:
When is nothing really something? When it leads to a revelation about boron, an element with worlds of unexplored potential.

Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Houston, TX | Posted on April 23rd, 2012

Theoretical physicist Boris Yakobson and his team at Rice University have taken an unusual approach to analyzing the possible configurations of two-dimensional sheets of boron, as reported this week in the American Chemical Society journal Nano Letters.

Treating it as Swiss cheese - in which the holes are as defining as the cheese itself - was the key concept in figuring out what atom-thin sheets of boron might look like. Those sheets, when rolled into a hollow tube, or nanotube, could have a distinct advantage over carbon nanotubes; boron nanotubes are always metallic, while the carbon atoms in a nanotubes can bearranged to form either metallic or semiconducting nanotubes. This variation in atomic arrangement -- known as chirality -- is one of the major hurdles to carbon nanotube processing and development.

"If I dream wildly, I like to think boron nanotubes would make a great energy-transporting quantum wire," said Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science andprofessor of chemistry. "It would have the benefits of carbon, but without the challenge of selecting a particular symmetry."

A boron lattice, even in just two dimensions, can have a range of configurations, Yakobson said. Fully packed, it's a layer of atoms arranged in triangles. That's one extreme. But take one atom out, and what was six triangles becomes a hexagon. Take all such possible atoms out and the sheet looks exactly like graphene, the two-dimensional, single-atom thick form of carbon that has been all the rage in the world of chemistry and materials science for the past decade.

Between those two extremes are thousands of possible forms of pure boron in which missing atoms leave patterns of hexagonal holes.

"Carbon is well-defined," said Yakobson, whose theories focus on the interactions at play among atoms as they bond and break. "Any deviation in graphene's hexagonal form is what we call a defect, which has negative connotations.

"But we find there is a rich variety in two-dimensional boron," he said. "It's all purified - there's no non-boron here, even though there are vacancies, empty sites. The amazing thing is that nature prefers to have it that way; Not hexagonal, where every third position is missing an atom, and not a triangular lattice. The optimum is right in the middle."

In that most-stable middle ground, the researchers found 10 to 15 percent of the boron atoms in a lattice were missing, leaving "vacancy concentrations" in a variety of patterns.

Yakobson said using traditional computational methods to assess thousands of boron configurations would have cost too much and taken too long. So he and Rice research scientist Evgeni Penev applied cluster expansion, a method of calculation more commonly applied to alloys.

"Evgeni gave it a twist: He treated the empty spaces as the second alloy ingredient, in the same way you can't have Swiss cheese without 'alloyed in' voids and real cheese. In this calculation, the holes are an equal, physical entity."

With space as a pseudoalloy, the researchers found a range of formation energies one might employ to identify stable sheets of boron with particular vacancy concentrations. They also found that synthesized boron layers would probably be polymorphic: Each sheet could contain a jumble of patterns and still be considered pure boron.

"Polymorphic means that all these possibilities are pretty much equal, and equally likely to form," Yakobson said.

"This is a small part of the fundamental physics," Penev said. "The next step is to consider more practical things, like whether it can be synthesized and under what conditions."

Yakobson, who in 2007 first theorized the possibility of an 80-atom boron "buckyball," said that while boron is difficult to work with, that difficulty makes it more rewarding. "On one hand, it's very hard to conceive a possibility or to get experimental evidence. On the other hand, the field isn't as crowded as graphene."

Co-authors of the paper are Rice postdoctoral researchers Somnath Bhowmick and Arta Sadrzadeh.

The research was supported by the Department of Energy and the National Science Foundation through funding of Rice's DAVinCI computer cluster, administered by the Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Chemistry

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Graphene

Graphenea embarks on a new era April 16th, 2015

The Casiraghi Group, located at the University of Manchester's NanoScience and Spectroscopy Laboratory, use Raman in the study of graphene April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Physics

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Chip Technology

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

Nanotubes/Buckyballs/Fullerenes

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Discoveries

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Materials/Metamaterials

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Combined effort for structural determination April 15th, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Quantum nanoscience

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

Quantum physics -- hot and cold at the same time: Measurements at the Vienna University of Technology show that a cloud of quantum particles can have several temperatures at once; the experiment provides new insight into the behavior of large quantum systems April 9th, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE