Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance. (Credit: Evgeni Penev/Rice University)
Rice University researchers led by theoretical physicist BorisYakobson used a technique usually applied to alloys to explore the rich variety of two-dimensional boron. They treated the vacancies in boron like the holes in Swiss cheese, as an element essential to its existance.

(Credit: Evgeni Penev/Rice University)

Abstract:
When is nothing really something? When it leads to a revelation about boron, an element with worlds of unexplored potential.

Flat boron may take many forms: Rice University researchers find two-dimensional boron has potential advantages over graphene

Houston, TX | Posted on April 23rd, 2012

Theoretical physicist Boris Yakobson and his team at Rice University have taken an unusual approach to analyzing the possible configurations of two-dimensional sheets of boron, as reported this week in the American Chemical Society journal Nano Letters.

Treating it as Swiss cheese - in which the holes are as defining as the cheese itself - was the key concept in figuring out what atom-thin sheets of boron might look like. Those sheets, when rolled into a hollow tube, or nanotube, could have a distinct advantage over carbon nanotubes; boron nanotubes are always metallic, while the carbon atoms in a nanotubes can bearranged to form either metallic or semiconducting nanotubes. This variation in atomic arrangement -- known as chirality -- is one of the major hurdles to carbon nanotube processing and development.

"If I dream wildly, I like to think boron nanotubes would make a great energy-transporting quantum wire," said Yakobson, Rice's Karl F. Hasselmann Professor of Mechanical Engineering and Materials Science andprofessor of chemistry. "It would have the benefits of carbon, but without the challenge of selecting a particular symmetry."

A boron lattice, even in just two dimensions, can have a range of configurations, Yakobson said. Fully packed, it's a layer of atoms arranged in triangles. That's one extreme. But take one atom out, and what was six triangles becomes a hexagon. Take all such possible atoms out and the sheet looks exactly like graphene, the two-dimensional, single-atom thick form of carbon that has been all the rage in the world of chemistry and materials science for the past decade.

Between those two extremes are thousands of possible forms of pure boron in which missing atoms leave patterns of hexagonal holes.

"Carbon is well-defined," said Yakobson, whose theories focus on the interactions at play among atoms as they bond and break. "Any deviation in graphene's hexagonal form is what we call a defect, which has negative connotations.

"But we find there is a rich variety in two-dimensional boron," he said. "It's all purified - there's no non-boron here, even though there are vacancies, empty sites. The amazing thing is that nature prefers to have it that way; Not hexagonal, where every third position is missing an atom, and not a triangular lattice. The optimum is right in the middle."

In that most-stable middle ground, the researchers found 10 to 15 percent of the boron atoms in a lattice were missing, leaving "vacancy concentrations" in a variety of patterns.

Yakobson said using traditional computational methods to assess thousands of boron configurations would have cost too much and taken too long. So he and Rice research scientist Evgeni Penev applied cluster expansion, a method of calculation more commonly applied to alloys.

"Evgeni gave it a twist: He treated the empty spaces as the second alloy ingredient, in the same way you can't have Swiss cheese without 'alloyed in' voids and real cheese. In this calculation, the holes are an equal, physical entity."

With space as a pseudoalloy, the researchers found a range of formation energies one might employ to identify stable sheets of boron with particular vacancy concentrations. They also found that synthesized boron layers would probably be polymorphic: Each sheet could contain a jumble of patterns and still be considered pure boron.

"Polymorphic means that all these possibilities are pretty much equal, and equally likely to form," Yakobson said.

"This is a small part of the fundamental physics," Penev said. "The next step is to consider more practical things, like whether it can be synthesized and under what conditions."

Yakobson, who in 2007 first theorized the possibility of an 80-atom boron "buckyball," said that while boron is difficult to work with, that difficulty makes it more rewarding. "On one hand, it's very hard to conceive a possibility or to get experimental evidence. On the other hand, the field isn't as crowded as graphene."

Co-authors of the paper are Rice postdoctoral researchers Somnath Bhowmick and Arta Sadrzadeh.

The research was supported by the Department of Energy and the National Science Foundation through funding of Rice's DAVinCI computer cluster, administered by the Ken Kennedy Institute for Information Technology.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

Graphene/ Graphite

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Wrinkles give heat a jolt in pillared graphene : Rice University researchers test 3-D carbon nanostructures' thermal transport abilities November 2nd, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Chip Technology

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Quantum nanoscience

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project