Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Thermoelectric materials switch between heat and electricity in a unique and clean solid-state approach.

Abstract:
In the last couple of decades, thermoelectrics have been drawing more and more research interest due to the limited availability and the negative environmental impact of conventional energy strategies.

In the past, as a measuring stick of the conversion efficiency, the term "dimensionless figure-of-merit," also referred to as ZT, has been widely used. A high ZT value usually promises high thermoelectric performance. Typically, good thermoelectric materials should simultaneously display low thermal conductivity and good electrical conductivity.

Thermoelectric materials switch between heat and electricity in a unique and clean solid-state approach.

Boston, MA | Posted on April 23rd, 2012

Striving to enhance the performance of thermoelectric materials, researchers from Boston College and MIT have recently reported a novel materials design to achieve a 30 to 40% enhancement in the peak ZT value for n-type SiGe semiconducting alloys.

Bo Yu, lead author of a paper describing the recent work, says that SiGe has been almost the exclusive choice for high temperature thermoelectric applications. The material has been used in the radioisotope thermoelectric generators (RTGs) employed by US NASA ever since 1976.

Nevertheless, the broader application of SiGe has been limited by the fact that germanium, which is used to reduce the thermal conductivity in such alloys, is extremely expensive and the cost has to justify the performance.

Bo Yu, is a graduate researcher in the Department of Physics at Boston College working in Zhifeng Ren` s group. He worked on this project with MIT collaborators, Mona Zebarjadi, Gang Chen, and Mildred S. Dresselhaus.

The scientists reported that the modulation-doping strategy, conventionally used in the thin-film semiconductor industry, could also be utilised in the 3D bulk thermoelectric materials to enhance their carrier mobility and therefore the electrical conductivity, by over 50% in this case.

By improvising materials design, the team also achieved a simultaneous reduction in the thermal conductivity which combines to provide a high ZT value of about 1.3 at 900 °C.

"To improve materials ZT is extremely challenging because all the internal parameters are closely related to each other. Once you change one of them, the others may most likely change accordingly to the other extreme, leading to no net improvement. As a result, a more popular trend in this field of study is to look into new opportunities, or say new material system. However, our study proved that opportunities are still there for the existing materials, if one could work smartly enough to find some alternative material designs," explains Bo Yu.

Zhifeng Ren also points out that this reported ZT peak value competes well with the state-of-art n-type SiGe alloy materials while the new material design requires over 30% less of germanium. "That is a significant advantage to cut down the fabrication cost as we want all the materials we studied in the group be really used by people in reality and that is always the goal for our everyday research," adds Ren.

By using a similar strategy, researchers are also looking into other traditional materials systems trying for more breakthroughs. Actually, this Boston College and MIT team, led by Ren and Chen, has been a pioneer in the clean energy research community for years especially for their contribution in understanding and controlling the phonon and electron transport in bulk thermoelectric composite materials.

Currently, their research is funded by the S3TEC (Solid state solar thermal energy conversion) Centre which is part of the US DOE Energy Frontier Research Centre program, aiming at advancing fundamental science and developing materials to harness heat from the sun and convert this heat into electricity via solid-state thermoelectric and thermophotovoltaic technologies.

This work has been described in more detail in the paper, "Enhancement of Thermoelectric Properties Modulation-Doping in Silicon Germanium Alloy Nanocomposites" by Bo Yu et al, Nano Letters, 2012, 12 (4), pp 2077-2082. DOI: 10.1021/nl3003045.

####

For more information, please click here

Contacts:
Bo Yu
Higgins RM160, 140 Commonwealth Ave.
Chestnut Hill, MA 02467
United States

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Discoveries

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Materials/Metamaterials

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Announcements

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project