Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanodot-based memory sets new world speed record

Abstract:
A team of researchers from Taiwan and the University of California, Berkeley, has harnessed nanodots to create a new electronic memory technology that can write and erase data 10-100 times faster than today's mainstream charge-storage memory products. The new system uses a layer of non-conducting material embedded with discrete (non-overlapping) silicon nanodots, each approximately 3 nanometers across. Each nanodot functions as a single memory bit. To control the memory operation, this layer is then covered with a thin metallic layer, which functions as a "metal gate." The metal gate controls the "on" and "off" states of the transistor. The results are published in the American Institute of Physics' (AIP) journal Applied Physics Letters.

Nanodot-based memory sets new world speed record

College Park, MD | Posted on April 21st, 2012

A team of researchers from Taiwan and the University of California, Berkeley, has harnessed nanodots to create a new electronic memory technology that can write and erase data 10-100 times faster than today's mainstream charge-storage memory products. The new system uses a layer of non-conducting material embedded with discrete (non-overlapping) silicon nanodots, each approximately 3 nanometers across. Each nanodot functions as a single memory bit. To control the memory operation, this layer is then covered with a thin metallic layer, which functions as a "metal gate." The metal gate controls the "on" and "off" states of the transistor. The results are published in the American Institute of Physics' (AIP) journal Applied Physics Letters.

"The metal-gate structure is a mainstream technology on the path toward nanoscale complementary metal-oxide-semiconductor (CMOS) memory technology," said co-author Jia-Min Shieh, researcher, National Nano Device Laboratories, Hsinchu, Taiwan. "Our system uses numerous, discrete silicon nanodots for charge storage and removal. These charges can enter (data write) and leave (data erase) the numerous discrete nanodots in a quick and simple way."

The researchers were able to achieve this new milestone in speed by using ultra-short bursts of green laser light to selectively anneal (activate) specific regions around the metal layer of the metal gate of the memory. Since the sub-millisecond bursts of laser light are so brief and so precise, they are able to accurately create gates over each of the nanodots. This method of memory storage is particularly robust, the researchers explain, because if an individual charge in one of the nano-sites failed, it would barely influence the others. This enables a stable and long-lived data storage platform.

"The materials and the processes used for the devices are also compatible with current main-stream integrated circuit technologies," explains Shieh. "This technology not only meets the current CMOS process line, but can also be applied to other advanced-structure devices."

Article: "Fast Programming Metal-Gate Si Quantum Dot Nonvolatile Memory Using Green Nanosecond Laser Spike Annealing" is published in Applied Physics Letters.

Authors: Yu-Chung Lien (1), Jia-Min Shieh (1,2), Wen-Hsien Huang (1), Cheng-Hui Tu (2), Chieh Wang (2), Chang-Hong Shen (1), Bau-Tong Dai (1), Ci-Ling Pan (3), Chenming Hu (4), and Fu-Liang Yang (1).

(1) National Nano Device Laboratories, Hsinchu, Taiwan
(2) Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan
(3) Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
(4) Department of Electrical Engineering and Computer Science, University of California, Berkeley

####

For more information, please click here

Contacts:
Charles Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Chip Technology

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Memory Technology

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project