Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanodot-based memory sets new world speed record

Abstract:
A team of researchers from Taiwan and the University of California, Berkeley, has harnessed nanodots to create a new electronic memory technology that can write and erase data 10-100 times faster than today's mainstream charge-storage memory products. The new system uses a layer of non-conducting material embedded with discrete (non-overlapping) silicon nanodots, each approximately 3 nanometers across. Each nanodot functions as a single memory bit. To control the memory operation, this layer is then covered with a thin metallic layer, which functions as a "metal gate." The metal gate controls the "on" and "off" states of the transistor. The results are published in the American Institute of Physics' (AIP) journal Applied Physics Letters.

Nanodot-based memory sets new world speed record

College Park, MD | Posted on April 21st, 2012

A team of researchers from Taiwan and the University of California, Berkeley, has harnessed nanodots to create a new electronic memory technology that can write and erase data 10-100 times faster than today's mainstream charge-storage memory products. The new system uses a layer of non-conducting material embedded with discrete (non-overlapping) silicon nanodots, each approximately 3 nanometers across. Each nanodot functions as a single memory bit. To control the memory operation, this layer is then covered with a thin metallic layer, which functions as a "metal gate." The metal gate controls the "on" and "off" states of the transistor. The results are published in the American Institute of Physics' (AIP) journal Applied Physics Letters.

"The metal-gate structure is a mainstream technology on the path toward nanoscale complementary metal-oxide-semiconductor (CMOS) memory technology," said co-author Jia-Min Shieh, researcher, National Nano Device Laboratories, Hsinchu, Taiwan. "Our system uses numerous, discrete silicon nanodots for charge storage and removal. These charges can enter (data write) and leave (data erase) the numerous discrete nanodots in a quick and simple way."

The researchers were able to achieve this new milestone in speed by using ultra-short bursts of green laser light to selectively anneal (activate) specific regions around the metal layer of the metal gate of the memory. Since the sub-millisecond bursts of laser light are so brief and so precise, they are able to accurately create gates over each of the nanodots. This method of memory storage is particularly robust, the researchers explain, because if an individual charge in one of the nano-sites failed, it would barely influence the others. This enables a stable and long-lived data storage platform.

"The materials and the processes used for the devices are also compatible with current main-stream integrated circuit technologies," explains Shieh. "This technology not only meets the current CMOS process line, but can also be applied to other advanced-structure devices."

Article: "Fast Programming Metal-Gate Si Quantum Dot Nonvolatile Memory Using Green Nanosecond Laser Spike Annealing" is published in Applied Physics Letters.

Authors: Yu-Chung Lien (1), Jia-Min Shieh (1,2), Wen-Hsien Huang (1), Cheng-Hui Tu (2), Chieh Wang (2), Chang-Hong Shen (1), Bau-Tong Dai (1), Ci-Ling Pan (3), Chenming Hu (4), and Fu-Liang Yang (1).

(1) National Nano Device Laboratories, Hsinchu, Taiwan
(2) Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Taiwan
(3) Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
(4) Department of Electrical Engineering and Computer Science, University of California, Berkeley

####

For more information, please click here

Contacts:
Charles Blue

301-209-3091

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Memory Technology

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Domain walls in nanowires cleverly set in motion: Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications April 8th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE