Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Floor van de Pavert: seeing the (almost) invisible with nano-wires quality - part 2

Abstract:
How three young entrepreneurs have transformed a brilliant invention into a commercial product - by SERGIO PISTOI

Floor van de Pavert: seeing the (almost) invisible with nano-wires quality - part 2

Brussels, Belgium | Posted on April 19th, 2012

The story began a few years ago, when two scientists from the University of Delft (see related story) developed a way to double the efficiency of currently available single photons detectors. These devices, which are used in research and in the industry, can detect infinitesimal amounts of light, down to a single photon. In late 2011, the researchers teamed up with Floor van de Pavert, an expert in technological transfer with a background in physics. Together they founded Single Quantum, a start-up company that commercializes the invention. We talked with van de Pavert, the company's CEO, to know more about their business approach.

Ms. van de Pavert, how did you move from the laboratory results to a commercial endeavour?

The company spun off from the research work of Sander Dorenbos and Val Zwiller (currently CTO and Scientific Adviser of Single Quantum - editor's note) at the University of Delft. After they developed their single photon detector, Sander and Val gave it to other laboratories. At one point, the device became so popular that they were getting requests from scientists all over the world. This is when they realize it could become a commercial product, and I came on board. The device was an improvement of an existing detector, so we had to obtain a licence with the owners of the original patent. The coaching we got from the Pronano project was very helpful to establish the company and to negotiate the licence deal.

What is your business model?

Since we have a functioning product, we decided to commercialize it directly. We are already selling our device successfully, which provides us with a cash flow since the beginning. This is certainly a very fortunate situation compared to most start-ups.

How are you planning to grow in the near future?

At this stage it is crucial to establish a professional company structure. We also want to identify new markets and new applications and to look for commercial products in which our technology could be embedded.

In your experience, what is the hardest part of the job when establishing a start-up?

I believe the most difficult part is to make a good team and to have people with complementary expertise. Having a physics background was helpful for me to understand the technology, but when moving from the laboratory to the market, you also need different sets of non-technical skills like communication or networking capabilities. We were lucky to be a good, synergetic team. It's just a pleasure working together.

Sergio Pistoi - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Physics

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Superconductivity

Physicists gain new view of superconductor April 15th, 2016

Elusive state of superconducting matter discovered after 50 years April 14th, 2016

Detection of atomic scale structure of Cooper-pairs in a high-TC superconductor: Researchers from Seoul National University and the Center for Correlated Electron Systems within the Institute for Basic Science discover a Cooper-pair density wave at an atomic level April 14th, 2016

New magnetism research brings high-temp superconductivity applications closer April 11th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Quantum Computing

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Discoveries

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Superfast light source made from artificial atom April 28th, 2016

Announcements

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

Patents/IP/Tech Transfer/Licensing

System creates on-demand 'nanotube forests,' has potential industry applications April 20th, 2016

Smaller. Cheaper. Better. Iron nitride transformers developed at Sandia could boost energy storage options March 28th, 2016

Correction: Solar fuels: Protective layer for the 'artificial leaf' March 22nd, 2016

New nanoparticle technology to decipher structure and function of membrane proteins March 9th, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic