Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Sander Dorenbos
Sander Dorenbos

Abstract:
A new device based on superconducting nano-materials helps to detect single photons with higher efficiency - by SERGIO PISTOI

Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Brussels, Belgium | Posted on April 19th, 2012

Detecting a single photon may seem overkill for most purposes. However, looking at such tiny amounts of light is essential for researchers working with quantum computers as well as for chip manufacturers, just to mention two examples. Sander Dorenbos and Val Zwiller, two scientists from the University of Delft, have developed a way to double the efficiency of currently commercially available single photons detectors. In early 2012, they have founded a company together with Floor van de Pavert (see related article) to commercialize their technology.

Dr. Dorenbos, what is the technology behind your single photon detector?

Our device is based on a superconducting nano-wire. It is basically a 5 nanometers-thick wire that becomes a superconductor if it is cooled at extremely low temperatures, below -270 C. A single photon hitting the superconducting wire is enough to produce a signal that can be sent to an optical fibre and detected. The wire itself sits on a small chip and can be manufactured in different shapes, a grid or a spiral, for example.

How did you achieve a better sensitivity?

The original technology for nano-wire detectors was developed by other groups in the US and Russia, but the efficiency was low. We modified the design of such device so that the detection efficiency would be significantly improved. We used different materials as substrate and we added a sort of mirror behind the nano-wire that reflects the photons back, multiplying their impact. The resulting efficiency is twice that of currently available single photon detectors in the infrared spectrum.

Can you make a few examples of applications using single photon detectors?

To date, people working with single photons are mostly scientists. For example, there are lots of studies on quantum computers that use single photons as bits. Chip manufacturers also use single photon detectors to check their products: working chips emit a very tiny light that can be detected with the suitable equipment. And in the future, single photon detectors will be likely used for medical imaging.

What are the next steps of your work?

We are working to increase the efficiency further. We also aim to develop arrays with multiple detector chips that could work like extremely sensitive cameras, opening the way to new applications.

Sergio Pistoi - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Superconductivity

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

News and information

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Physics

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Chip Technology

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Quantum Computing

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Discoveries

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Announcements

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Tools

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Photonics/Optics/Lasers

Photon collisions: Photonic billiards might be the newest game! May 20th, 2016

Well Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic