Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Sander Dorenbos
Sander Dorenbos

Abstract:
A new device based on superconducting nano-materials helps to detect single photons with higher efficiency - by SERGIO PISTOI

Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Brussels, Belgium | Posted on April 19th, 2012

Detecting a single photon may seem overkill for most purposes. However, looking at such tiny amounts of light is essential for researchers working with quantum computers as well as for chip manufacturers, just to mention two examples. Sander Dorenbos and Val Zwiller, two scientists from the University of Delft, have developed a way to double the efficiency of currently commercially available single photons detectors. In early 2012, they have founded a company together with Floor van de Pavert (see related article) to commercialize their technology.

Dr. Dorenbos, what is the technology behind your single photon detector?

Our device is based on a superconducting nano-wire. It is basically a 5 nanometers-thick wire that becomes a superconductor if it is cooled at extremely low temperatures, below -270 °C. A single photon hitting the superconducting wire is enough to produce a signal that can be sent to an optical fibre and detected. The wire itself sits on a small chip and can be manufactured in different shapes, a grid or a spiral, for example.

How did you achieve a better sensitivity?

The original technology for nano-wire detectors was developed by other groups in the US and Russia, but the efficiency was low. We modified the design of such device so that the detection efficiency would be significantly improved. We used different materials as substrate and we added a sort of mirror behind the nano-wire that reflects the photons back, multiplying their impact. The resulting efficiency is twice that of currently available single photon detectors in the infrared spectrum.

Can you make a few examples of applications using single photon detectors?

To date, people working with single photons are mostly scientists. For example, there are lots of studies on quantum computers that use single photons as bits. Chip manufacturers also use single photon detectors to check their products: working chips emit a very tiny light that can be detected with the suitable equipment. And in the future, single photon detectors will be likely used for medical imaging.

What are the next steps of your work?

We are working to increase the efficiency further. We also aim to develop arrays with multiple detector chips that could work like extremely sensitive cameras, opening the way to new applications.

Sergio Pistoi - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Physics

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Flexible Metamaterial Absorbers July 29th, 2014

Measuring the Smallest Magnets July 28th, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Quantum Computing

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Harris & Harris Group Portfolio Company D-Wave Systems Closes a $28.4 Million Financing July 14th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Tools

Keysight Technologies Begins Operations August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

Photonics/Optics/Lasers

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

From Narrow to Broad July 30th, 2014

Terabyte Photonic Dataset Sale July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE