Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Sander Dorenbos
Sander Dorenbos

Abstract:
A new device based on superconducting nano-materials helps to detect single photons with higher efficiency - by SERGIO PISTOI

Sander Dorenbos: seeing the (almost) invisible with nano-wires quality - part 1

Brussels, Belgium | Posted on April 19th, 2012

Detecting a single photon may seem overkill for most purposes. However, looking at such tiny amounts of light is essential for researchers working with quantum computers as well as for chip manufacturers, just to mention two examples. Sander Dorenbos and Val Zwiller, two scientists from the University of Delft, have developed a way to double the efficiency of currently commercially available single photons detectors. In early 2012, they have founded a company together with Floor van de Pavert (see related article) to commercialize their technology.

Dr. Dorenbos, what is the technology behind your single photon detector?

Our device is based on a superconducting nano-wire. It is basically a 5 nanometers-thick wire that becomes a superconductor if it is cooled at extremely low temperatures, below -270 °C. A single photon hitting the superconducting wire is enough to produce a signal that can be sent to an optical fibre and detected. The wire itself sits on a small chip and can be manufactured in different shapes, a grid or a spiral, for example.

How did you achieve a better sensitivity?

The original technology for nano-wire detectors was developed by other groups in the US and Russia, but the efficiency was low. We modified the design of such device so that the detection efficiency would be significantly improved. We used different materials as substrate and we added a sort of mirror behind the nano-wire that reflects the photons back, multiplying their impact. The resulting efficiency is twice that of currently available single photon detectors in the infrared spectrum.

Can you make a few examples of applications using single photon detectors?

To date, people working with single photons are mostly scientists. For example, there are lots of studies on quantum computers that use single photons as bits. Chip manufacturers also use single photon detectors to check their products: working chips emit a very tiny light that can be detected with the suitable equipment. And in the future, single photon detectors will be likely used for medical imaging.

What are the next steps of your work?

We are working to increase the efficiency further. We also aim to develop arrays with multiple detector chips that could work like extremely sensitive cameras, opening the way to new applications.

Sergio Pistoi - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Superconductivity

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Physics

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Discoveries

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Tools

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

Photonics/Optics/Lasers

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project