Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotube electrodes improve solar cells: Rice, Tsinghua collaboration could yield low-cost, efficient alternative to silicon-based cells

Arrays of vertically aligned single-walled carbon nanotubes (VASWCNTs) grown at Rice University are key to making better and cheaper dye-sensitized solar cells, an alternative to more expensive silicon solar cells. The arrays are transferred to conducting glass, topped with a second electrode of titanium oxide and surrounded by iodine-free electrolyte developed at Tsinghua University. (Credit: Lou Lab/Rice University)
Arrays of vertically aligned single-walled carbon nanotubes (VASWCNTs) grown at Rice University are key to making better and cheaper dye-sensitized solar cells, an alternative to more expensive silicon solar cells. The arrays are transferred to conducting glass, topped with a second electrode of titanium oxide and surrounded by iodine-free electrolyte developed at Tsinghua University.

(Credit: Lou Lab/Rice University)

Abstract:
Forests of carbon nanotubes are an efficient alternative for platinum electrodes in dye-sensitized solar cells (DSC), according to new research by collaborators at Rice University and Tsinghua University.

Nanotube electrodes improve solar cells: Rice, Tsinghua collaboration could yield low-cost, efficient alternative to silicon-based cells

Houston, TX | Posted on April 17th, 2012

The single-wall nanotube arrays, grown in a process invented at Rice, are both much more electroactive and potentially cheaper than platinum, a common catalyst in DSCs, said Jun Lou, a materials scientist at Rice. In combination with newly developed sulfide electrolytes synthesized at Tsinghua, they could lead to more efficient and robust solar cells at a fraction of the current cost for traditional silicon-based solar cells.

Lou and co-lead investigator Hong Lin, a professor of materials science and engineering at Tsinghua, detailed their work in the online, open-access Nature journal Scientific Reports this week.

DSCs are easier to manufacture than silicon-based solid-state photovoltaic cells but not as efficient, said Lou, a professor of mechanical engineering and materials science. "DSCs are sensitized with dyes, ideally organic dyes like the juices from berries - which some students have actually used in demonstrations."

Dyes absorb photons from sunlight and generate a charge in the form of electrons, which are captured first by a semiconducting titanium oxide layer deposited on a current collector before flowing back to the counter electrode through another current collector. Progress has been made in the manufacture of DSCs that incorporate an iodine-based electrolyte, but iodine tends to corrode metallic current collectors, which "poses a challenge for its long-termreliability," Lou said.

Iodine electrolyte also has the unfortunate tendency to absorb light in the visible wavelengths, "which means fewer photons could be utilized," Lou said.

So Tsinghua researchers decided to try a noncorrosive, sulfide-based electrolyte that absorbs little visible light and works well with the single-walled carbon nanotube carpets created in the Rice lab of Robert Hauge, a co-author of the paper and a distinguished faculty fellow in chemistry at Rice's Richard E. Smalley Institute for Nanoscale Science and Technology .

"These are very versatile materials," Lou said. "Single-walled carbon nanotubes have been around at Rice for a very long time, and people have found many different ways to use them. This is another way that turns out to be very well-matched to a sulfid-based electrolyte in DSC technology."

Both Rice and Tsinghua built working solar cells, with similar results. They were able to achieve a power conversion efficiency of 5.25 percent - lower than the DSC record of 11 percent with iodine electrolytes a platinum electrode, but significantly higher a control that combined the new electrolyte with a traditional platinum counter electrode. Resistance between the new electrolyte and counter electrode is "the lowest we've ever seen," Lou said.

There's much work to be done, however. "The carbon nanotube-to-current collector still has a pretty large contact resistance, and the effects of structuraldefects in carbon nanotubes on their corresponding performance are not fully understood, but we believe once we optimize everything, we're going to get decent efficiency and make the whole thing very affordable," Lou said. "The real attraction is that it will be a very low-cost alternative to silicon-based solar cells."

Pei Dong, a graduate student in Lou's lab, and Feng Hao, a graduate student at Tsinghua, are lead authors of the paper. Co-authors include Rice graduate students Jing Zhang and Philip Loya, Yongchang Zhang of Tsinghua and Professor Jianbao Li of Hainan University, China.

The project was supported by tNational High Technology Research and Development Program of China, the Welch Foundation and the Faculty Initiative Fund at Rice.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom.” With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf .

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper at:

Related News Press

News and information

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Discoveries

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Announcements

Yale researchers’ technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic