Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscientists find long-sought Majorana particle

The device is made of an Indium Antemonide nanowire, covered with a Gold contact and partially covered with a Superconducting Niobium contact. The Majorana fermions are created at the end of the Nanowire.
The device is made of an Indium Antemonide nanowire, covered with a Gold contact and partially covered with a Superconducting Niobium contact. The Majorana fermions are created at the end of the Nanowire.

Abstract:
Scientists at TU Delft's Kavli Institute and the Foundation for Fundamental Research on Matter (FOM Foundation) have succeeded for the first time in detecting a Majorana particle. In the 1930s, the brilliant Italian physicist Ettore Majorana deduced from quantum theory the possibility of the existence of a very special particle, a particle that is its own anti-particle: the Majorana fermion. That ‘Majorana' would be right on the border between matter and anti-matter.

Nanoscientists find long-sought Majorana particle

The Netherlands | Posted on April 16th, 2012

Nanoscientist Leo Kouwenhoven already caused great excitement among scientists in February by presenting the preliminary results at a scientific congress. On 12 April, the scientists will publish their research in Science. The research was financed by the FOM Foundation and Microsoft.

Quantum computer and dark matter

Majorana fermions are very interesting - not only because their discovery opens up a new and uncharted chapter of fundamental physics; they may also play a role in cosmology. A proposed theory assumes that the mysterious ‘dark matter, which forms the greatest part of the universe, is composed of Majorana fermions. Furthermore, scientists view the particles as fundamental building blocks for the quantum computer. Such a computer is far more powerful than the best supercomputer, but only exists in theory so far. Contrary to an ‘ordinary' quantum computer, a quantum computer based on Majorana fermions is exceptionally stable and barely sensitive to external influences.
Nanowire

For the first time, scientists in Leo Kouwenhoven's research group managed to create a nanoscale electronic device in which a pair of Majorana fermions ‘appear' at either end of a nanowire. They did this by combining an extremely small nanowire, made by colleagues from Eindhoven University of Technology, with a superconducting material and a strong

magnetic field. ‘The measurements of the particle at the ends of the nanowire cannot otherwise be explained than through the presence of a pair of Majorana fermions', says Leo Kouwenhoven..

Particle accelerators

It is theoretically possible to detect a Majorana fermion with a particle accelerator such as the one at CERN. The current Large Hadron Collider appears to be insufficiently sensitive for that purpose but, according to physicists, there is another possibility: Majorana fermions can also appear in properly designed nanostructures. ‘What's magical about quantum mechanics is that a Majorana particle created in this way is similar to the ones that may be observed in a particle accelerator, although that is very difficult to comprehend', explains Kouwenhoven. ‘In 2010, two different groups of theorists came up with a solution using nanowires, superconductors and a strong magnetic field. We happened to be very familiar with those ingredients here at TU Delft through earlier research.' Microsoft approached Leo Kouwenhoven to help them lead a special FOM programme in search of Majorana fermions, resulting in a successful outcome..

Ettore Majorana

The Italian physicist Ettore Majorana was a brilliant theorist who showed great insight into physics at a young age. He discovered a hitherto unknown solution to the equations from which quantum scientists deduce elementary particles: the Majorana fermion. Practically all theoretic particles that are predicted by quantum theory have been found in the last decades, with just a few exceptions, including the enigmatic Majorana particle and the well-known Higgs boson. But Ettore Majorana the person is every bit as mysterious as the particle. In 1938 he withdrew all his money and disappeared during a boat trip from Palermo to Naples. Whether he killed himself, was murdered or lived on under a different identity is still not known. No trace of Majorana was ever found.
References

The article is published in Science Express on 12 April: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, V. Mourik1†, K. Zuo1†, S.M. Frolov1, S.R. Plissard2, E.P.A.M. Bakkers1,2, L.P. Kouwenhoven1*

1Kavli Institute of Nanoscience, TU Delft, 2600 GA Delft.
2Department of Applied Physics, TU Eindhoven, 5600 MB Eindhoven.
†These authors contributed equally.
*E-mail:

####

For more information, please click here

Contacts:

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Quantum Computing

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Quantum nanoscience

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic