Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscientists find long-sought Majorana particle

The device is made of an Indium Antemonide nanowire, covered with a Gold contact and partially covered with a Superconducting Niobium contact. The Majorana fermions are created at the end of the Nanowire.
The device is made of an Indium Antemonide nanowire, covered with a Gold contact and partially covered with a Superconducting Niobium contact. The Majorana fermions are created at the end of the Nanowire.

Abstract:
Scientists at TU Delft's Kavli Institute and the Foundation for Fundamental Research on Matter (FOM Foundation) have succeeded for the first time in detecting a Majorana particle. In the 1930s, the brilliant Italian physicist Ettore Majorana deduced from quantum theory the possibility of the existence of a very special particle, a particle that is its own anti-particle: the Majorana fermion. That ‘Majorana' would be right on the border between matter and anti-matter.

Nanoscientists find long-sought Majorana particle

The Netherlands | Posted on April 16th, 2012

Nanoscientist Leo Kouwenhoven already caused great excitement among scientists in February by presenting the preliminary results at a scientific congress. On 12 April, the scientists will publish their research in Science. The research was financed by the FOM Foundation and Microsoft.

Quantum computer and dark matter

Majorana fermions are very interesting - not only because their discovery opens up a new and uncharted chapter of fundamental physics; they may also play a role in cosmology. A proposed theory assumes that the mysterious ‘dark matter, which forms the greatest part of the universe, is composed of Majorana fermions. Furthermore, scientists view the particles as fundamental building blocks for the quantum computer. Such a computer is far more powerful than the best supercomputer, but only exists in theory so far. Contrary to an ‘ordinary' quantum computer, a quantum computer based on Majorana fermions is exceptionally stable and barely sensitive to external influences.
Nanowire

For the first time, scientists in Leo Kouwenhoven's research group managed to create a nanoscale electronic device in which a pair of Majorana fermions ‘appear' at either end of a nanowire. They did this by combining an extremely small nanowire, made by colleagues from Eindhoven University of Technology, with a superconducting material and a strong

magnetic field. ‘The measurements of the particle at the ends of the nanowire cannot otherwise be explained than through the presence of a pair of Majorana fermions', says Leo Kouwenhoven..

Particle accelerators

It is theoretically possible to detect a Majorana fermion with a particle accelerator such as the one at CERN. The current Large Hadron Collider appears to be insufficiently sensitive for that purpose but, according to physicists, there is another possibility: Majorana fermions can also appear in properly designed nanostructures. ‘What's magical about quantum mechanics is that a Majorana particle created in this way is similar to the ones that may be observed in a particle accelerator, although that is very difficult to comprehend', explains Kouwenhoven. ‘In 2010, two different groups of theorists came up with a solution using nanowires, superconductors and a strong magnetic field. We happened to be very familiar with those ingredients here at TU Delft through earlier research.' Microsoft approached Leo Kouwenhoven to help them lead a special FOM programme in search of Majorana fermions, resulting in a successful outcome..

Ettore Majorana

The Italian physicist Ettore Majorana was a brilliant theorist who showed great insight into physics at a young age. He discovered a hitherto unknown solution to the equations from which quantum scientists deduce elementary particles: the Majorana fermion. Practically all theoretic particles that are predicted by quantum theory have been found in the last decades, with just a few exceptions, including the enigmatic Majorana particle and the well-known Higgs boson. But Ettore Majorana the person is every bit as mysterious as the particle. In 1938 he withdrew all his money and disappeared during a boat trip from Palermo to Naples. Whether he killed himself, was murdered or lived on under a different identity is still not known. No trace of Majorana was ever found.
References

The article is published in Science Express on 12 April: Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, V. Mourik1†, K. Zuo1†, S.M. Frolov1, S.R. Plissard2, E.P.A.M. Bakkers1,2, L.P. Kouwenhoven1*

1Kavli Institute of Nanoscience, TU Delft, 2600 GA Delft.
2Department of Applied Physics, TU Eindhoven, 5600 MB Eindhoven.
†These authors contributed equally.
*E-mail:

####

For more information, please click here

Contacts:

Copyright © TU Delft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Physics

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Discoveries

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Quantum nanoscience

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

From metal to insulator and back again April 22nd, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Quantization of 'surface Dirac states' could lead to exotic applications April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project