Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon Nanotubes Kill Breast Cancer Stem Cells

Abstract:
Breast cancer stem cells, the slow-growing, hard-to-kill malignant cells that are thought to be responsible for the growth and spread of breast cancer, have proven remarkably resistant to traditional chemotherapy and radiation therapy. Now, researchers at Wake Forest Baptist Medical Center have shown that multi-walled carbon nanotubes (MWCNTs) injected into breast tumors and irradiated with a quick, 30-second laser beam, are effective at killing breast cancer stem cells.

Carbon Nanotubes Kill Breast Cancer Stem Cells

Bethesda, MD | Posted on April 5th, 2012

Suzy Torti led the research team that conducted this work. She and her colleagues published their finding in the journal Biomaterials. Earlier work by Dr. Torti's research team had demonstrated that MWCNTs irradiated with short laser pulses generate heat that can kill kidney tumors.

Using a mouse model of human breast cancer, the researchers injected tumors containing breast cancer stem cells with MWCNTs, which consist of concentric tubes of graphite. By themselves, nanotubes do not kill tumors, but if they are exposed to laser-generated, near-infrared radiation they start to vibrate and produce heat. This combination can produce a local region in the tumor that is hot enough to kill any tumor cell, not just those that are growing rapidly.

Using this method, the group was able to stop the growth of tumors that were largely composed of breast cancer stem cells. Breast cancer stem cells have high levels of the protein hsp90 which enables them to adapt to higher temperature fluctuations. The investigators showedthat rapid induction of high temperatures by the laser induces cell death by a process known as necrosis even when hsp90 is present. In fact, tumor-bearing mice treated with this therapy experienced complete tumor regression and long-term survival. These findings suggest that nanotube-mediated thermal treatment can eliminate both the differentiated cells that constitute the bulk of the tumor and the cancer stem cells that drive tumor growth and recurrence.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy." An abstract of this paper is available at the journal's website.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy."

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Could black phosphorus be the next silicon? New material could make it possible to pack more transistors on a chip, research suggests July 7th, 2015

A cool way to form 2-D conducting polymers using ice: POSTECH scientists develop breakthrough technique to easily optimize electrical properties of Polyaniline nanosheets to an unprecedented level in an environmental-friendly and inexpensive way July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Nanotubes/Buckyballs/Fullerenes

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanomedicine

Sensor technology can improve accuracy of prostate cancer diagnosis, research shows July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Photonics/Optics/Lasers

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project