Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale magnetic media diagnostics by rippling spin waves

Trapped beneath the magnetic tip of a microscale cantilever, spin waves can be used to non-destructively measure the properties of magnetic materials and search for nanoscale defects, especially in multilayer magnetic systems like a typical hard drive, where defects could be buried beneath the surface.

Credit: McMichael/NIST
Trapped beneath the magnetic tip of a microscale cantilever, spin waves can be used to non-destructively measure the properties of magnetic materials and search for nanoscale defects, especially in multilayer magnetic systems like a typical hard drive, where defects could be buried beneath the surface.

Credit: McMichael/NIST

Abstract:
Memory devices based on magnetism are one of the core technologies of the computing industry, and engineers are working to develop new forms of magnetic memory that are faster, smaller, and more energy efficient than today's flash and SDRAM memory. They now have a new tool developed by a team from the National Institute of Standards and Technology (NIST), the University of Maryland Nanocenter and the Royal Institute of Technology in Sweden—a method to detect defects in magnetic structures as small as a tenth of a micrometer even if the region in question is buried inside a multilayer electronic device.*

Nanoscale magnetic media diagnostics by rippling spin waves

Gaithersburg, MD | Posted on April 3rd, 2012

The technique demonstrated at the NIST Center for Nanoscale Technology (CNST) builds on work by researchers at the Ohio State University.** The idea is to trap and image oscillating perturbations of a magnetic field—"spin waves"—in a thin film. Trapped spin waves provide scientists with a powerful new tool to nondestructively measure the properties of magnetic materials and search for nanoscale defects that could or have caused memory failures, especially in multilayer magnetic systems like a typical hard drive, where defects could be buried beneath the surface.

According to NIST researcher Robert McMichael, when left alone, the material's magnetization is like the surface of a pond on a windless day. The pond is comprised of smaller magnetic moments that come with the quantum mechanical "spin" of electrons. Tap the surface of the pond with a piece of driftwood, or microwaves in this case, and the surface will begin to ripple with spin waves as the microwave energy jostles the spins, which, in turn, jostle their neighbors.

"The trick we play is to tune the microwaves to a frequency just outside the band where the spin waves can propagate—except right under our magnetic probe tip," says McMichael. "It's like the pond is frozen except for a little melted spot that we can move around to check magnetic properties at different spots in the sample."

The trapped spin waves are disturbed by defects in the material, and this effect allows the defects to be characterized on 100 nm length scales.

Previous work had shown this same effect in magnetic spins that were oriented perpendicular to the magnetic film surface, meaning that the individual spins coupled strongly with their neighbors, which limited the resolution. This new work adds the extra feature that the magnetic spins are aligned in plane with one another and are not as tightly coupled. This setup is not only more representative of how many magnetic devices would be structured, but also allows for tighter focusing and better resolution.

* H-J. Chia, F. Guo, L.M. Belova and R. D. McMichael. Nanoscale spin wave localization using ferromagnetic resonance force microscopy. Physical Review Letters. 108, 087206 (2012). prl.aps.org/pdf/PRL/v108/i8/e087206.

** See Lee et al. Nanoscale scanning probe ferromagnetic resonance imaging using localized modes. Nature. 466, 12. Aug. 12, 2010. doi:10.1038/nature09279.

####

For more information, please click here

Contacts:
Mark Esser,

301-975-8735

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Laboratories

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Thin films

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Memory Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project