Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fuelling hopes for unplugged power supplies

Abstract:
An ingenious trick improves the efficiency of direct methanol fuel cells. Will they become an alternative to traditional batteries and power units? (by Sergio Pistoi)

Fuelling hopes for unplugged power supplies

Brussels, Belgium | Posted on April 3rd, 2012

If you have been left high and dry by your Ipad battery and unable to recharge it, you see the problem. High tech gadgets, electronic appliances and electric cars have a well-know downside: sooner or later, you need to look for a plug - and a power grid- to keep them alive.

Fuel cells - where electricity is produced directly by the oxidation of compounds such as alcohols - hold the promise to provide portable, clean and silent sources of energy and have therefore been investigated for decades as an alternative to traditional batteries.

A team from the School of Chemical Engineering and Analytical Science at the University of Manchester, UK (The research team includes Dr Stuart Holmes, Dr Craig Dawson, Mr Saravana Shanmukham) has come up with a solution to improve the efficiency of direct methanol fuel cells (DMFCs), a variety of cells where methanol is used to produce electricity.

Clare Arkwright, licensing manager at University of Manchester Intellectual Property, is working with the group to transfer this knowledge into commercial applications.

Ms. Arkwright, what are the potential uses of DMFCs?

The biggest advantage is that they can be used in the field and away from any electricity grid. One perspective is to use fuel cells in portable electronic items as an alternative to batteries. However, the efficiency of these cells is still limited, and their use has been limited to a few applications, especially in the military.

How does your technology improve the efficiency of DMFCs?

The heart of fuel cells is the so-called membrane electron assembly (MEA) a barrier that allows the passage of energy but blocks the fuel, avoiding short-circuiting. A typical problem of DMFCs is that some methanol travels across the membrane, reducing the power output. Our team have discovered that a simple modification to the conventional fabrication method for the MEA increases the power density of DMFCs by up to 60% whilst at the same time reducing methanol crossover. The improvement requires only a minor change in the manufacturing process, and therefore could be easily adopted by industry.

What are you doing to transfer this technology into practical applications ?

We aim to license the technology to the companies that produce DMFCs. We applied for a patent, and we are now engaging some industrial partners in pilot tests to prove that the technology works outside our laboratory. Pronano has helped us to understand the market landscape and identify potential companies to work with.

What is a foreseeable future for DMFCs?

The market is still relatively small, but reports indicate that there is significant potential for growth. Portable battery chargers, laptops, field power units and even vehicles are some of the fields where DMFC may be used in the future. We hope that our work will help to make this technology more competitive and widely available.

SERGIO PISTOI

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +39 02 7002571

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Discoveries

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Announcements

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Automotive/Transportation

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Argonne National Laboratoryís Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

Fuel Cells

Argonne National Laboratoryís Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project