Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology Used to Measure Low Concentrations of Cyanide Ion in Water

Abstract:
Iranian researchers successfully measured low concentrations of the toxic and harmful cyanide ion in aqueous environments by using nanotechnology.

Nanotechnology Used to Measure Low Concentrations of Cyanide Ion in Water

Tehran, Iran | Posted on March 29th, 2012

"Synthetic silver nanoparticles were used in the research as the colorimetric sensor in order to measure low concentrations of cyanide ion in aqueous environments," Salahoddin Hajizadeh, MSc in analytical chemistry from Urmia University, told the INIC.

According to him, the purpose of this research was to present a simple, cost-effective, selective, and sensitive method for the measurement of low concentrations of the toxic and dangerous cyanide ion in water by using nanotechnology.

"The pollution of water reservoirs with cyanide compounds is among the important environmental challenges. Most of the reported colorimetric methods to measure cyanide are based on organic colors, so they are applicable in organic environments. Therefore, it is necessary to present a simple and cost-effective method to measure cyanide in aqueous solutions," he added.

Elaborating on the method of the research, Hajizadeh said, "Colloidal solution of silver nanoparticles has a bright yellowish color. Therefore, the formation and stabilization of silver nanoparticle solution can be confirmed by using ultraviolet-visible light spectroscopy analysis. The synthesized silver nanoparticle solution is stable for months in the dark at the room temperature, and its SPR adsorption band of the solution does not change. However, when the aqueous cyanide solution is added to silver nanoparticle solution, its color becomes pale. The solution becomes colorless at the presence of extra amount of cyanide."

"The increase in the intensity of SPR adsorption band is in proportion with the concentration of cyanide, and there is a linear relation between the concentration of cyanide and the reduction in the adsorption of silver nanoparticle solution."

Hajizadeh explained about the advantage of the presented method, and added, "This method can easily be used with naked eye, or by using a simple spectrophotometer device in order to detect cyanide in water."

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Tools

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Water

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project